Self-assembled two-dimensional colloidal crystals (CCs) are critical components in many optical and optoelectronic devices. Such structures usually exhibit various types of disorder, which sometimes can be beneficial for the desired applications. However, disorder poses challenges to the modeling of two-dimensional structures. In this work, two-dimensional CCs employed in optoelectronic devices, especially dye-sensitized solar cells, are investigated. scanning electron microscope (SEM) images were used to quantify the disorder in the studied structures. As a basis for simulations, disordered model patterns were generated with properties extracted from the SEM images of prepared samples. Optical modeling was performed with a finite-difference time-domain simulator. The simulated transmission data are consistent with the experimentally measured spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.408576 | DOI Listing |
J Colloid Interface Sci
December 2024
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China. Electronic address:
As a novel carbon-based material with two-dimensional (2D) characteristics, graphdiyne (GDY) shows great potential in constructing active catalytic sites due to its distinctive atomic configuration and sp/sp conjugated hybrid two-dimensional networks. In this study, the layered GDY was synthesized using the ball milling method, and ZnCdS/Graphdiyne/NiO (ZnCdS/GDY/NiO) composite was synthesized by in-situ composite and physical mixing method. The prepared ZnCdS/GDY/NiO has good photostability outstanding performance in photocatalytic hydrogen production.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China.
Integrating conductive supports and modulating electronic structures are widely recognized as effective strategies for improving the catalytic performance of transition metal sulfides. This study demonstrates the simultaneous integration of CoS with two-dimensional TiCT-MXene and the introduction of sulfur vacancies (S) in CoS through a straightforward sintering process followed by plasma treatment, culminating in the formation of the CoS/TiCT composite. Characterization results demonstrate that the TiCT support significantly improves electrical conductivity and promotes the uniform dispersion of CoS nanoparticles.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:
Clinical diagnosis and long-term diabetes management are advanced by monitoring glycated hemoglobin A1c (HbA1c) levels. New sensitive sandwich-like immunosensors for the diagnosis of early diabetes toward detecting HbA1c and hemoglobin (Hb) are demonstrated for the first time. DNA aptamers are used for signal amplification in the sensors for the detection of HbA1c and Hb.
View Article and Find Full Text PDFCurr Protoc
December 2024
Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
Osteoarthritis (OA) is one of the most prevalent joint diseases globally, characterized by the progressive breakdown of articular cartilage, resulting in chronic pain, stiffness, and loss of joint function. Despite its significant socioeconomic impact, therapeutic options remain limited, largely due to an incomplete understanding of the molecular mechanisms driving cartilage degradation and OA pathogenesis. Recent advances in in vitro modeling have revolutionized joint tissue research, transitioning from simplistic two-dimensional cell cultures to sophisticated three-dimensional (3D) constructs that more accurately mimic the physiological microenvironment of native cartilage.
View Article and Find Full Text PDFChem Rev
December 2024
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.
Two-dimensional organic-inorganic (2DOI) van der Waals hybrids (vdWhs) have emerged as a groundbreaking subclass of layer-stacked (opto-)electronic materials. The development of 2DOI-vdWhs via systematically integrating inorganic 2D layers with organic 2D crystals at the molecular/atomic scale extends the capabilities of traditional 2D inorganic vdWhs, thanks to their high synthetic flexibility and structural tunability. Constructing an organic-inorganic hybrid interface with atomic precision will unlock new opportunities for generating unique interfacial (opto-)electronic transport properties by combining the strengths of organic and inorganic layers, thus allowing us to satisfy the growing demand for multifunctional applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!