Defects or discontinuities are inevitable during the melting and consolidation process of metal additive manufacturing. Online inspection of microdefects during the processing of layer-by-layer fusion is urgently needed for quality control. In this study, the laser ultrasonic C-scan imaging system is established to detect the surface defects of selective laser melting (SLM) samples that have a different surface roughness. An autosizing method based on the maximum correlation coefficient and lag time is proposed to accurately measure the defect length. The influences of the surface roughness on the laser ultrasound signal-to-noise ratio distribution and defect sizing accuracy are also studied. The results indicate that the proposed system can detect notches with a depth of 50 µm and holes with a diameter of 50 µm, comparable in size to raw powder particles. The average error for the length measurement can reach 1.5% if the notch is larger than 2 mm. Meanwhile, the sizing error of a 1 mm length notch is about 9%. In addition, there is no need to remove the rough surface of the as-built SLM samples during the detection process. Hence, we propose that the laser ultrasonic imaging system is a potential method for online inspection of metal additive manufacturing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.405284 | DOI Listing |
BMC Chem
January 2025
Nursing Department, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, 430079, China.
Background: This work intended to assess the disinfection efficacy of hypochlorous acid (HA) and silver nanoparticles (AgNP) disinfectants in disinfecting the dental unit waterlines (DUWL) during comprehensive oral treatment and explore their potential applications in the oral medical environment.
Methods: Firstly, AgNP solution was prepared and evaluated through X-ray diffraction (XRD), field emission transmission electron microscope (FE-TEM), and stability tests. Subsequently, 15 dental units were selected and randomly assigned to three groups, each receiving a different disinfection method.
Ultrasonics
January 2025
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
In recent years, the widespread application of laser ultrasonic (LU) devices for obtaining internal material information has been observed. However, this approach demands a significant amount of time to acquire complete wavefield data. Hence, there is a necessity to reduce the acquisition time.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Restorative Dentistry, Dental Materials, and Endodontics, Bauru School of Dentistry, University of São Paulo, Rua Siqueira Campos, 180, Centro, Vitória da Conquista, Bauru, São Paulo, BA, ZIP: 45.000-455, Brazil.
Objective: This study investigated the associations among endodontic instruments, ultrasonic tips and various final irrigation protocols for removing intracanal and intratubular biofilms in long oval canals.
Methodology: One hundred mandibular premolars inoculated with Enterococcus faecalis were divided into two groups: the control group (CG: n = 10), which received no treatment; and the test groups (n = 30), which included saline (SS), sodium hypochlorite (2.5% NaOCl) and chlorhexidine (2% CHX).
Materials (Basel)
January 2025
Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA.
Fusion-welded austenitic stainless steel (ASS) was predominantly employed to manufacture dry storage canisters (DSCs) for the storage applications of spent nuclear fuel (SNF). However, the ASS weld joints are prone to chloride-induced stress corrosion cracking (CISCC), a critical safety issue in the nuclear industry. DSCs were exposed to a chloride-rich environment during storage, creating CISCC precursors.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Faculty for the Built Environment, University of Malta, MSD 2080 Msida, Malta.
This paper highlights the optimisation of a key design parameter essential to the development of PMUTs, which are part of the transmitting components of microsensors. These microsensors are designed for use in the Structural Health Monitoring of reinforced concrete structures. Enhancing the effectiveness of the transmitting component allows for greater spacing between microsensors, which in turn reduces the number of devices needed to implement a full structural health monitoring system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!