We propose a tunable multilayer-graphene-based broadband metamaterial selective absorber using the finite-difference time domain. The simulation results reveal that the absorption spectra of the proposed metamaterial with the nano-cylinder and 30-layer graphene show high absorption (88.3%) in the range of 250-2300 nm, which covers the entire solar spectrum. Moreover, the graphene-based metamaterial has a low thermal emittance of 3.3% in the mid-infrared range (4-13 µm), which can greatly reduce the heat loss. The proposed metamaterial has a tunable cutoff wavelength, which can be tuned by controlling the Fermi level of graphene. In addition, our structure is an angle-insensitive absorber, and the device has the potential to be widely used in solar cell and thermal detectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.409271 | DOI Listing |
We propose a tunable multilayer-graphene-based broadband metamaterial selective absorber using the finite-difference time domain. The simulation results reveal that the absorption spectra of the proposed metamaterial with the nano-cylinder and 30-layer graphene show high absorption (88.3%) in the range of 250-2300 nm, which covers the entire solar spectrum.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2019
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
Controllably tuned infrared emissivity has attracted great interest for potential application in adaptive thermal camouflage. In this work, we report a flexible multilayer graphene based infrared device on a porous polyethylene membrane, where the infrared emissivity could be tuned by ionic liquid intercalation. The Fermi level of surface multilayer graphene shifts to a high energy level through ionic liquid intercalation, which blocks electronic transition below the Fermi level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!