Reversible logic gates are capable of designing lossless digital systems, which have received a great deal of attention in photonic integrated circuits due to their advantages, such as less heat generation and low power dissipation. In this paper, all-optical reversible Feynman and Toffoli logic gates are designed for optical computing devices and low-power integrated circuits. Proposed designs of all-optical reversible logic gates are implemented with two-dimensional photonic crystal waveguides without using any nonlinear material. The finite-difference time-domain method is used to simulate and verify the proposed design, and it is operated at a wavelength of 1550 nm. The structure of all-optical reversible logic gates requires much less area, and Feynman logic gates offer a contrast ratio (CR) of 12.4 dB, transmittance of 0.96, and less insertion loss of -0.015, while Toffoli logic gates offer a CR of 32.5 dB, transmittance of 0.9, and less insertion loss of -0.04.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.409404 | DOI Listing |
Small Methods
January 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Differentiating photoelectric response in a single material with a simple approach is desirable for all-in-one optoelectronic logical devices. In ferroelectric materials, significantly distinct photoelectric features should be observed if they are in diverse polarization states, unveiling a possible pathway to realize multifunctional optoelectronic logic gates through ferroelectric polarization design. In this study, the Ti self-doping strategy is first applied to 0.
View Article and Find Full Text PDFTalanta
January 2025
School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China. Electronic address:
The use of dynamic DNA logic circuits for disease diagnosis at the molecular level plays a considerable role in biomedical fields. Nevertheless, how to create programmable nanomachines based on molecular logical gates to accurately identify multiple biomarkers from tumor cells remains a pivotal challenge. Herein, we developed a DNA-based nanomachine for analyzing and imaging multiple microRNAs (miRNAs) in cancerous cells with a logical AND operation.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, Panjab University Chandigarh, 160014, India.
The research aimed to develop of a thiabendazole-derived dual metal sensing probe (TBZT) for the selective detection of metal ions and to explore its metal complexes in reducing environmental pollutants like nitro-phenol and dyes. Absorption and emission based studies predicted the selectivity and sensitivity of TBZT towards Ni(II) and Co(II) ions which was further validated by HNMR, Mass, FT-IR, DFT, Docking, electrochemical, TGA studies and vibrating sample magnetometer analysis techniques. Limit of detection (LOD) values were calculated as 2 × 10 M and 4.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2025
RWTH Aachen University, Aachen, Germany.
The MiG-V was designed for high-security applications and is the first commercially available logic-locked RISC-V processor on the market. In this context, logic locking was used to protect the RISC-V processor design during the untrusted manufacturing process by using key-driven logic gates to obfuscate the original design. Although this method defends against malicious modifications, such as hardware Trojans, logic locking's impact on the RISC-V processor's data confidentiality during runtime has not been thoroughly examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!