The iterative algorithm based on optical path difference and ray deflection (IAORD) is investigated in detail, and an advanced version (AIAORD) is proposed to obtain the refractive indices of the shell and the ice layer of the inertial confinement fusion (ICF) target simultaneously. The concept of the fixed-point iteration is introduced in the advanced algorithm, and it is found that the right choice of the combination of the input values and the characteristic curves is the key to ensure convergence in the iteration. The test uncertainties of the index measurement are analyzed by simulations, and they show that the uncertainties of the refractive indices of the shell and ice layer are 9.94% and 1.20%, respectively. Characteristic curves of typical ICF targets are studied, from which we conclude that AIAORD is versatile and suitable for the applications with any two unknown target parameters to be solved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.409026 | DOI Listing |
Sci Rep
January 2025
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
The energy cascade, i.e. the transfer of kinetic energy from large-scale to small-scale flow motions, has been the cornerstone of turbulence theories and models since the 1940s.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. Electronic address:
Although ignition had been achieved at the National Ignition Facility (NIF), recent observations of the experiments indicate novel physics that beyond theoretical predictions emerge, e.g., the neutron analysis of experiments has revealed deviations from the Maxwellian distributions in ion relative kinetic energies of burning plasmas, with the surprising emergence of supra-thermal deuterium and tritium (DT) ions that fall outside the predictions of macroscopic statistical hydrodynamic models.
View Article and Find Full Text PDFPhys Rev E
November 2024
Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
Diffusion-dominated mix in inertial confinement fusion (ICF) is characterized where the majority of the mix occurs in the immediate fuel-shell interface while hydrodynamic-dominated mix pulls shell material from farther away into the central fuel. A thin (150 nm) separated reactants ICF mix platform is highly sensitive to the amount of mix from the first micron of shell-fuel interface. This fine-spatial resolution platform has revealed that material mix in moderate convergence (CR∼12) ICF implosions is dominated by a diffusion mechanism.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Recent fusion breakeven [Abu-Shawareb et al., Phys. Rev.
View Article and Find Full Text PDFSensors (Basel)
November 2024
College Department of Electronic and Information Engineering, Hengshui University, Hengshui 053000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!