Salt stress is a major abiotic factor that affects the growth and yield of crops. The present study was carried out to assess the salt tolerance among the Arka Samrat, Arka Rakshak, YVU-1, S-22, YVU-2, and PKM-OP tomato germplasms using principal component analysis (PCA). Different salt (NaCl) concentrations like control, 0.04 M, 0.12 M, and 0.20 M were selected in order to classify them into sensitive and tolerant tomato germplasms based on 13 parameters. A significant variation was observed among the selected tomato germplasms towards salinity tolerance at the seedling stage. Shoot length, root length, fresh weight, and dry weight parameters of the seedlings were decreased linearly with an increase in the external NaCl concentration. Salinization of plants has shown to reduce K content and increase in the Na accumulation, Ca, and Catalase activity. Salt stress also increased electrolyte leakage and reduced relative water content of all germplasms. The maximum parameters were less affected in Arka Rakshak and Arka Samrat compared to the remaining germplasms at higher salt stress. The PCA analysis of 13 morphological and physiological variables indicated that Arka Rakshak and Arka Samrat germplasms were salt-tolerant and PKM-OP was susceptible. Thus PCA analysis results are useful for the identification of resistance and sensitive germplasms at the seedling stage.

Download full-text PDF

Source

Publication Analysis

Top Keywords

seedling stage
12
salt stress
12
arka samrat
12
arka rakshak
12
tomato germplasms
12
principal component
8
component analysis
8
rakshak arka
8
pca analysis
8
germplasms
7

Similar Publications

Bacteriophages (phages) are being investigated as potential biocontrol agents for the suppression of bacterial diseases in cultivated crops. Jumbo bacteriophages, which possess genomic DNA larger than 200 kbp, generally have a broader host range than other phages and therefore would be useful as biocontrol agents against a wide range of bacterial strains. Thus, the characterization of novel jumbo phages specific for agricultural pathogens would be of importance for the development of phage biocontrol strategies.

View Article and Find Full Text PDF

Aquaculture systems generate large amounts of sludge that represent serious environmental threats if discharged directly into local ecosystems. However, this nutrient-rich sediment can contribute to nutrient cycling by being applied as an organic fertilizer to ornamental medicinal trees during their early growth stages. To investigate the potential advantages of using recirculating aquaculture system sludge (RASS) and biofloc technology sludge (BFTS) as organic fertilization alternatives to chemical fertilization, a pot trial was conducted at the Faculty of Agriculture, Cairo University, Egypt.

View Article and Find Full Text PDF

Overexpressing OsNF-YB12 elevated the content of jasmonic acid and impaired drought tolerance in rice.

Plant Sci

January 2025

Shanghai Agrobiological Gene Center, Shanghai, 201106 China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China. Electronic address:

Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots.

View Article and Find Full Text PDF

Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.

View Article and Find Full Text PDF

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!