Background: Cognitive and sleep dysfunction are common non-motor symptoms in Parkinson's disease (PD).

Objective: Determine the relationship between slow wave sleep (SWS) and cognitive performance in PD.

Methods: Thirty-two PD participants were evaluated with polysomnography and a comprehensive level II neurocognitive battery, as defined by the Movement Disorders Society Task Force for diagnosis of PD-mild cognitive impairment. Raw scores for each test were transformed into z-scores using normative data. Z-scores were averaged to obtain domain scores, and domain scores were averaged to determine the Composite Cognitive Score (CCS), the primary outcome. Participants were grouped by percent of SWS into High SWS and Low SWS groups and compared on CCS and other outcomes using 2-sided t-tests or Mann-Whitney U. Correlations of cognitive outcomes with sleep architecture and EEG spectral power were performed.

Results: Participants in the High SWS group demonstrated better global cognitive function (CCS) (p = 0.01, effect size: r = 0.45). In exploratory analyses, the High SWS group showed better performance in domains of executive function (effect size: Cohen's d = 1.05), language (d = 0.95), and processing speed (d = 1.12). Percentage of SWS was correlated with global cognition and executive function, language, and processing speed. Frontal EEG delta power during N3 was correlated with the CCS and executive function. Cognition was not correlated with subjective sleep quality.

Conclusion: Increased SWS and higher delta spectral power are associated with better cognitive performance in PD. This demonstrates the significant relationship between sleep and cognitive function and suggests that interventions to improve sleep might improve cognition in individuals with PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058231PMC
http://dx.doi.org/10.3233/JPD-202215DOI Listing

Publication Analysis

Top Keywords

spectral power
12
cognitive function
12
high sws
12
executive function
12
cognitive
9
slow wave
8
wave sleep
8
eeg delta
8
delta spectral
8
power associated
8

Similar Publications

Supercontinuum generation in scintillator crystals.

Sci Rep

January 2025

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.

View Article and Find Full Text PDF

Current industrial separation and sorting technologies struggle to efficiently identify and classify a large part of Waste of Electric and Electronic Equipment (WEEE) plastics due to their high content of certain additives. In this study, Raman spectroscopy in combination with machine learning methods was assessed to develop classification models that could improve the identification and separation of Polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), Polycarbonate (PC) and the blend PC/ABS contained in WEEE streams, including black plastics, to increase their recycling rate, and to enhance plastics circularity. Raman spectral analysis was carried out with two lasers of different excitation wavelengths (785 nm and 1064 nm) and varying setting parameters (laser power, integration time, focus distance) with the aim at reducing the fluorescence.

View Article and Find Full Text PDF

Detecting shielded special nuclear material, such as nuclear explosives, is a difficult challenge pursued by non-proliferation, anti-terrorism, and nuclear security programs worldwide. Interrogation with intense fast-neutron pulses is a promising method to characterize concealed nuclear material rapidly but is limited by suitable source availability and proven instrumentation. In this study we have pioneered a demonstration of such an interrogation method using a high-intensity, short-pulse, laser-driven neutron source that offers potential benefits compared to conventional neutron sources.

View Article and Find Full Text PDF

Sensing-based deep brain stimulation should optimally consider both the motor and neuropsychiatric domain to maximize quality of life of Parkinson's disease (PD) patients. Here we characterize the neurophysiological properties of the subthalamic nucleus (STN) in 69 PD patients using a newly established neurophysiological gradient metric and contextualize it with motor symptoms and apathy. We could evidence a STN power gradient that holds most of the spectral information between 5 and 30 Hz spanning along the dorsal-ventral axis.

View Article and Find Full Text PDF

Background: Dementia exhibits abnormal network activity, including altered gamma frequency (30-100 Hz) in Alzheimer's disease (AD). A non-pharmacological, non-invasive approach to AD treatment involves stimulating sensory inputs using gamma band, with 40 Hz as the most effective in eliciting a robust EEG response. Light and sound stimulation at 40 Hz reduces AD pathology in mouse models and improves cognition in humans with AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!