Purpose: The risk of exercise-induced endotoxemia is increased in the heat and is primarily attributable to changes in gut permeability resulting in the translocation of lipopolysaccharides (LPS) into the circulation. The purpose of this study was to quantify the acute changes in gut permeability and LPS translocation during submaximal continuous and high-intensity interval exercise under heat stress.

Methods: A total of 12 well-trained male runners (age 37 [7] y, maximal oxygen uptake [VO2max] 61.0 [6.8] mL·min-1·kg-1) undertook 2 treadmill runs of 2 × 15-minutes at 60% and 75% VO2max and up to 8 × 1-minutes at 95% VO2max in HOT (34°C, 68% relative humidity) and COOL (18°C, 57% relative humidity) conditions. Venous blood samples were collected at the baseline, following each running intensity, and 1 hour postexercise. Blood samples were analyzed for markers of intestinal permeability (LPS, LPS binding protein, and intestinal fatty acid-binding protein).

Results: The increase in LPS binding protein following each exercise intensity in the HOT condition was 4% (5.3 μg·mL-1, 2.4-8.4; mean, 95% confidence interval, P < .001), 32% (4.6 μg·mL-1, 1.8-7.4; P = .002), and 30% (3.0 μg·mL-1, 0.03-5.9; P = .047) greater than in the COOL condition. LPS was 69% higher than baseline following running at 75% VO2max in the HOT condition (0.2 endotoxin units·mL-1, 0.1-0.4; P = .011). Intestinal fatty acid-binding protein increased 43% (2.1 ng·mL-1, 0.1-4.2; P = .04) 1 hour postexercise in HOT compared with the COOL condition.

Conclusions: Small increases in LPS concentration during exercise in the heat and subsequent increases in intestinal fatty acid-binding protein and LPS binding protein indicate a capacity to tolerate acute, transient intestinal disturbance in well-trained endurance runners.

Download full-text PDF

Source
http://dx.doi.org/10.1123/ijspp.2019-0973DOI Listing

Publication Analysis

Top Keywords

lps binding
12
binding protein
12
intestinal fatty
12
fatty acid-binding
12
changes gut
8
gut permeability
8
lps
8
permeability lps
8
exercise heat
8
75% vo2max
8

Similar Publications

Unlabelled: Crohn's disease (CD) is a multifactorial inflammatory bowel disease whose pathogenetic mechanisms are a field of ongoing study. Changes in the intestinal microbiome in CD may influence metabolite production and reflect the disease's severity. We investigate the relationship between trimethylamine N-oxide (TMAO) and lipopolysaccharide-binding protein (LPS) levels and changes in the gut microbiome in patients with CD of various degrees of activity.

View Article and Find Full Text PDF

Dual inhibition of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is a recognized strategy for enhanced anti-inflammatory effects in small molecules, offering potential therapeutic benefits for individuals at risk of dementia, particularly those with neurodegenerative diseases, common cancers, and diabetes type. Alzheimer's disease (AD) is the most common cause of dementia, and the inhibition of acetylcholinesterase (AChE) is a key approach in treating AD. Meanwhile, Caspase-3 catalyzes early events in apoptosis, contributing to neurodegeneration and subsequently AD.

View Article and Find Full Text PDF

NF-κB-Inducing Kinase Is Essential for Effective c-Rel Transactivation and Binding to the Promoter in Macrophages.

Biology (Basel)

January 2025

Department of Biochemistry and Molecular Biology, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Nicolás Cabrera 1, 28049 Madrid, Spain.

This study investigates the role of NIK in activating specific inflammatory genes in macrophages, focusing on the effect of a mutation in NIK found in alymphoplasia (/) mice. Mouse peritoneal macrophages from / mice showed a severe defect in the production of some pro-inflammatory cytokines, such as IL-12. This effect seemed to take place at the transcriptional level, as shown by the reduced transcription of and in / macrophages after exposure to the TLR4 agonist LPS.

View Article and Find Full Text PDF

The current study first describes the chemical profiles of essential oils from Vietnamese Chromolaena odorata fresh stem barks and leaves. The gas chromatography-flame inonization detection/mass spectrometry (GC-FID/MS) analysis revealed that α-pinene (6.97-38.

View Article and Find Full Text PDF

Deep-Sea-Derived Isobisvertinol Targets TLR4 to Exhibit Neuroprotective Activity via Anti-Inflammatory and Ferroptosis-Inhibitory Effects.

Mar Drugs

January 2025

Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.

Neuroinflammation and neuronal cell death are leading causes of death in the elderly and underlie various neurodegenerative diseases. These diseases involve complex pathophysiological mechanisms, including inflammatory responses, oxidative stress, and ferroptosis. Compounds derived from deep-sea fungi exhibit low toxicity and potent neuroprotective effects, offering a promising source for drug development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!