Wastewater treatment plants are considered hot spots for antibiotic resistance. Most studies have addressed the impact on the aquatic environment, as water is an important source of anthropogenic pollutants. Few investigations have been conducted on terrestrial animals living near treatment ponds. We isolated extended-spectrum-β-lactamase complex-producing strains from 35 clinical isolates, 29 samples of wastewater, 19 wild animals, and 10 domestic animals living in the hospital sewers and at or near a wastewater treatment plant to study the dissemination of clinically relevant resistance through hospital and urban effluents. After comparison of the antibiotic-resistant profiles of complex strains, a more detailed analysis of 41 whole-genome-sequenced strains demonstrated that the most common sequence type, ST114 ( = 20), was present in human ( = 9) and nonhuman ( = 11) samples, with a close genetic relatedness. Whole-genome sequencing confirmed local circulation of this pathogenic lineage in diverse animal species. In addition, nanopore sequencing and specific synteny of an IncHI2/ST1/ plasmid recovered on the majority of these ST114 clones ( = 18) indicated successful worldwide diffusion of this mobile genetic element.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092524 | PMC |
http://dx.doi.org/10.1128/AAC.02146-20 | DOI Listing |
Epidemiol Infect
January 2025
Health Protection Operations, South West, UK Health Security Agency, Bristol, UK.
In September 2023, the UK Health Security Agency's (UKHSA) South West Health Protection Team received notification of patients with perichondritis. All five cases had attended the same cosmetic piercing studio and a multi-disciplinary outbreak control investigation was subsequently initiated. An additional five cases attending the same studio were found.
View Article and Find Full Text PDFMicrob Genom
January 2025
mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand.
In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing . This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing found in the environment and their link with human clinical isolates.
View Article and Find Full Text PDFEnviron Health Insights
January 2025
Department of Environmental Health, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia.
Background: Wastewater treatment is crucial to protecting public health and the environment by removing Biohazards. In Ethiopia, however, significant research gaps limit progress, especially regarding the efficiency of Biohazard removal in existing treatment facilities. This review evaluates the effectiveness of current treatment methods for Biohazard removal, highlights key challenges, and offers recommendations.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Environmental Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Sidama Region, Ethiopia.
The aim of this study was to investigate the growth characteristics of different local macrophyte species (n = 7) capable of growing in untreated coffee wastewater, select the dominant species for use in mesocosms, to study the efficacy of three major species in three replications (3 x 3) in improving the physicochemical characteristics of coffee wet mill wastewater, and to assess the contribution of macrophyte biomass to nutrient sequestration in the constructed wetlands. The current study showed that can sustain water logging and partially saturated conditions. The conducted wetland experiments pointed out the feasibility of VUFCW technology in ameliorating the impurities in wet coffee processing mills wastewater.
View Article and Find Full Text PDFHeliyon
January 2025
African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.
The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!