Rothmund-Thomson syndrome (RTS) is an autosomal recessive disorder characterized by defects in the skeletal system, such as bone hypoplasia, short stature, low bone mass, and an increased incidence of osteosarcoma. RTS type 2 patients have germ line compound biallelic protein-truncating mutations of . As existing murine models employ null alleles, we have attempted to more accurately model RTS by generating mice with patient-mimicking truncating mutations. Truncating mutations impaired the stability and subcellular localization of RECQL4 and resulted in homozygous embryonic lethality and a haploinsufficient low-bone mass phenotype. Combination of a truncating mutation with a conditional null allele demonstrated that the skeletal defects were intrinsic to the osteoblast lineage. However, the truncating mutations did not promote tumorigenesis. We utilized murine null cells to assess the impact of human mutations using an complementation assay. While some mutations created unstable protein products, others altered subcellular localization of the protein. Interestingly, the severity of the phenotypes correlated with the extent of protein truncation. Collectively, our results reveal that truncating RECQL4 mutations in mice lead to an osteoporosis-like phenotype through defects in early osteoblast progenitors and identify RECQL4 gene dosage as a novel regulator of bone mass.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088275 | PMC |
http://dx.doi.org/10.1128/MCB.00590-20 | DOI Listing |
Unlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.
View Article and Find Full Text PDFClin Biochem
January 2025
Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi, China; Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Hematology, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China. Electronic address:
Background: High molecular weight kininogen (HMWK), encoded by the kininogen-1 (KNG1) gene, is a multifunctional glycoprotein closely associated with the initiation of blood coagulation, tumor growth, and other pathological processes.
Objective: We conducted a study on the clinical phenotype, genetic mutations, and molecular pathogenesis of a female patient with uterine leiomyosarcoma, who presented with HMWK deficiency and an isolated prolonged activated partial thromboplastin time (APTT).
Methods: Clinical phenotyping was conducted through APTT mixing studies, quantitative assessments of intrinsic coagulation factor activities, antigen levels of HMWK, and thromboelastography.
Mol Genet Metab
January 2025
Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. Electronic address:
Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) deficiency is a rare, potentially life-threatening autosomal recessive disorder resulting from mutations in the HMGCS2 gene, leading to impaired ketogenesis. We systematically reviewed the clinical presentations, biochemical and genetic abnormalities in 93 reported cases and 2 new patients diagnosed based on biochemical findings. Reported onset ages ranged from 3 months to 6 years, mostly before the age of 3.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Food Technology, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria.
is a potential bacterial cell factory to develop delivery systems for vaccines and therapeutic proteins. Much progress has been made in applications using engineered against, e.g.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!