Efficient detection of SARS-CoV-2 RNA in the solid fraction of wastewater.

Sci Total Environ

Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan.

Published: April 2021

In the context of the coronavirus disease 2019 (COVID-19) pandemic, environmental surveillance for the detection of SARS-CoV-2 has become increasingly important. Studies have demonstrated that the SARS-CoV-2 RNA is present in the feces of infected individuals; further, its presence in wastewater has been reported. However, an optimized method for its detection in sewage has not yet been adequately investigated. Therefore, in this study, the efficient detection of SARS-CoV-2 RNA in the solid fraction of wastewater was investigated using two quantitative PCR assays. In particular, wastewater samples were collected from a manhole located in the commercial district of a metropolitan region in Japan, where COVID-19 is highly prevalent, and two wastewater treatment plants (WWTPs). The samples were concentrated using four separate methods, namely, electronegative membrane adsorption, polyethylene glycol precipitation, ultrafiltration, and solid precipitation. Each method revealed a significant concentration of pepper mild mottle virus (PMMoV) RNA, which is an indicator virus for wastewater. As expected, non-enveloped PMMoV RNA was enriched in the supernatant fraction such that relatively low concentrations were detected in the solid fraction of the wastewater samples. In contrast, higher SARS-CoV-2 RNA concentrations were consistently detected in the solid fractions compared with the supernatant fractions based on the other methods that were investigated in this study. Spearman's correlation tests showed that the SARS-CoV-2 RNA concentrations in wastewater samples from the WWTP were significantly correlated with the number of COVID-19 cases recorded during the data collection period. These results demonstrate that viral recovery from the solid fraction is an effective method for SARS-CoV-2 RNA surveillance in an aqueous environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746508PMC
http://dx.doi.org/10.1016/j.scitotenv.2020.144587DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 rna
24
solid fraction
16
detection sars-cov-2
12
fraction wastewater
12
wastewater samples
12
efficient detection
8
rna
8
rna solid
8
wastewater
8
investigated study
8

Similar Publications

Background: Vascular dementia (VaD), the second most common cause of dementia, is characterized by cognitive decline due to reduced cerebral blood flow and blood-brain barrier disruption. Current evidence demonstrates that not only are VaD patients at higher risk of severe COVID-19 illness and mortality, but also that pre-existing cognitive dysfunction/dementia is associated with increased COVID-19 incidence. Conversely, SARS-CoV-2 infection alone worsens dementia-related mild cognitive impairment (MCI) and increases risk of cognitive decline, supported by similar fMRI findings demonstrating hypoperfusion.

View Article and Find Full Text PDF

Introduction: The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age.

View Article and Find Full Text PDF

One of the hallmarks of RNA viruses is highly structured untranslated regions (UTRs) which are often essential for viral replication, transcription, or translation. In this report, we discovered a series of coumarin derivatives that bind to a four-way RNA helix called SL5 in the 5' UTR of the SARS-CoV-2 RNA genome. To locate the binding site, we developed a sequencing-based method namely cgSHAPE-seq, in which an acylating probe was directed to crosslink with the 2'-OH group of ribose at the binding site to create read-through mutations during reverse transcription.

View Article and Find Full Text PDF

Introduction: Children with wheeze and asthma present with airway epithelial vulnerabilities, such as impaired responses to viral infection. It is postulated that the in utero environment may contribute to the development of airway epithelial vulnerabilities. The aims of the study were to establish whether the receptors for rhinovirus (RV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are expressed in the amniotic membrane and whether the pattern of expression is similar to newborn nasal epithelium.

View Article and Find Full Text PDF

This study aimed to investigate the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water samples obtained during the coronavirus disease 2019 pandemic period, employing cross-assembly phage (crAssphage) as a fecal contamination biomarker and next-generation sequencing protocols to characterize SARS-CoV-2 variants. Raw wastewater and surface water (stream and sea) samples were collected for over a month in Rio de Janeiro, Brazil. Ultracentrifugation and negatively charged membrane filtration were employed for viral concentration of the wastewater and surface water samples, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!