Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
At present, sustainable water supply and energy generation are the most important challenges faced by humankind globally. Thus, it is crucial to progress ecological techniques for sustainable removal of organic pollutants from wastewater and generation of hydrogen as an alternative to fossil fuels. In this study, zinc tungsten oxide (ZnWO) nanorods, bismuth tungsten oxide (BiWO) nanoflakes, and BiWO/ZnWO (BO-ZO) nanocomposites were prepared via a simple hydrothermal approach. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance spectroscopy, and electrochemical analyses were conducted to confirm the formation of the BO-ZO heterostructure. The structural and morphological analyses revealed that the ZnWO nanorods were moderately dispersed on the BiWO nanoflakes. The bandgap tuning of BO-ZO nanocomposite confirmed the establishment of the heterostructure with band bending properties. The BO-ZO nanocomposite could degrade 99.52% of methylene blue (MB) within 60 min upon solar-light illumination. The photoelectrochemical (PEC) measurement results showed that the BO-ZO nanocomposite showed low charge-transfer resistance and high photocurrent response with good stability. The BO-ZO photoanode showed a low charge-transfer resistance of 35.33 Ω and high photocurrent density of 0.1779 mA/cm in comparison with Ag/AgCl in a 0.1 M NaSO electrolyte under solar-light illumination. The MB photocatalytic degradation and PEC water oxidation mechanisms of the nanocomposite were investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.129346 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!