A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HDAC5 inhibition reduces angiotensin II-induced vascular contraction, hypertrophy, and oxidative stress in a mouse model. | LitMetric

HDAC5 inhibition reduces angiotensin II-induced vascular contraction, hypertrophy, and oxidative stress in a mouse model.

Biomed Pharmacother

Heart Research Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea; Hypertension and Heart Failure, Chonnam National University Hospital, Gwangju 61469, Republic of Korea. Electronic address:

Published: February 2021

Non-specific histone deacetylase (HDAC) inhibition reduces high blood pressure in essential hypertensive animal models. However, the exact HDAC isoforms that play a critical role in controlling hypertension are not known. Here, we investigated the role of HDAC5 in vascular contraction, hypertrophy, and oxidative stress in the context of angiotensin II (Ang II)-induced hypertension. Genetic deletion of HDAC5 and treatment with class IIa HDAC inhibitors (TMP269 and TMP195) prevented Ang II-induced increases in blood pressure and arterial wall thickness. Hdac5-knockout mice were also resistant to the thromboxane A2 agonist (U46619)-induced vascular contractile response. Furthermore, the expression of Rho-associated protein kinase (ROCK) 2 was downregulated in the aortas of Ang II-treated Hdac5-knockout mice. Knockdown of HDAC5, RhoA, or ROCK2 reduced collagen gel contraction, whereas silencing of ROCK1 increased it. VSMC hypertrophy reduced on knocking down HDAC5, ROCK1, and ROCK2. Here we showed that genetic deletion of HDAC5 and pharmacological inhibition of class IIa HDACs ameliorated Ang II-induced ROS generation. Moreover, ROCK1 and ROCK2, the downstream targets of HDAC5, influenced ROS generation. The relative protein levels of HDAC5, ROCK1, and ROCK2 were increased both in the cytoplasm and nuclear fraction in response to Ang II stimulation in vascular smooth muscle cells. Inhibition of HDAC5 expression or activity reduced vascular hypertrophy, vasoconstriction, and oxidative stress in the Ang II-induced hypertension model. These findings indicate that HDAC5 may serve as a potential target in the treatment of hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.111162DOI Listing

Publication Analysis

Top Keywords

ang ii-induced
16
oxidative stress
12
rock1 rock2
12
hdac5
10
inhibition reduces
8
vascular contraction
8
contraction hypertrophy
8
hypertrophy oxidative
8
blood pressure
8
ii-induced hypertension
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!