Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Previous research showed that standing on textured surfaces can improve postural control by adapting somatosensory inputs from the plantar foot. The additional stimulation of plantar cutaneous mechanoreceptors by a textured surface during single-leg stance on a balance board may increase afferent information to the central nervous system to accelerate muscular responses and to enhance their accuracy. The additional impact of textured surface during single-leg stance on a balance board on postural control and muscle activity is unknown.
Research Question: To investigate the differences of a) postural control during single-leg stance on a textured balance board compared to a smooth balance board and b) activity of lower extremity muscles during single-leg stance on a textured balance board compared to a smooth balance board and the floor.
Methods: Twenty-six healthy adults (12 females, 14 males; mean age = 25.4 years) were asked to balance on their randomly assigned left or right leg on a force plate (floor; stable condition), a textured balance board and a smooth balance board (unstable conditions). Center of pressure (CoP) displacements (force plate, Bertec, 1000 Hz) and electromyographic activity (EMG) of eight leg muscles were measured and compared between conditions, respectively.
Results: Neither CoP-displacements, nor EMG activities differed significantly between the textured and the smooth balance board (p > 0.05). Significantly higher muscle activities (p < 0.05) were observed using the balance boards compared to the floor.
Significance: Single-leg stance using a textured balance board seems not to lead to reduced CoP-displacements compared to a smooth balance board. Muscle activation is significantly increased in both balance board conditions compared to the floor, however, it is not different when both balance board surfaces are compared. It could not be recommended to use a textured balance board for altering muscle activity and improving postural control during single-leg stance in favor of a smooth textured balance board.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2020.12.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!