Several microRNAs (miRs) have been found to have modulating effects on trophoblast functions, yet the biological role and function of miR-96-5p and its interaction with Dimethylarginine Dimethylaminohydrolase 1 (DDAH1) remained poorly understood. After lentivirus transfection, the proliferation, migration, invasion and apoptosis of human trophoblast cells HTR-8/SVneo and SGHPL-4 were determined by Cell Counting Kit-8 (CCK-8) assay, scratch assay, Transwell, and flow cytometry, respectively. Relative expressions of miR-96-5p, DDAH1, and apoptosis-related proteins (B-cell lymphoma 2, Bcl-2; Bcl-2-associated X protein, Bax; cleaved (C) caspase-3) were detected via quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. The target gene of miR-96-5p and their potential binding sites were predicted using TargetScan V7.2 and confirmed by dual-luciferase reporter assay. MiR-96-5p downregulation promoted proliferation, migration and invasion, suppressed apoptosis, and decreased miR-96-5p expression in trophoblast cells in vitro, while miR-96-5p upregulation had the opposite effects. DDAH1 was recognized as a target gene of miR-96-5p, and silencing DDAH1 reversed the effects of miR-96-5p downregulation on the proliferation, migration, invasion and apoptosis of trophoblast cells as well as the expressions of apoptosis-related proteins. MiR-96-5p downregulation promotes proliferation, migration, and invasion, and suppresses apoptosis in human trophoblast cells in vitro via targeting DDAH1, which provides evidence for the implication of miR-96-5p in the functional modulation of trophoblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.repbio.2020.100474DOI Listing

Publication Analysis

Top Keywords

proliferation migration
20
migration invasion
20
trophoblast cells
20
apoptosis human
12
human trophoblast
12
mir-96-5p downregulation
12
mir-96-5p
10
promotes proliferation
8
targeting ddah1
8
invasion apoptosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!