Transcriptomics and enzymology combined five gene expressions to reveal the responses of earthworms (Eisenia fetida) to the long-term exposure of cyantraniliprole in soil.

Ecotoxicol Environ Saf

College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong 271018, China. Electronic address:

Published: February 2021

Cyantraniliprole is a novel diamide insecticide that acts upon the ryanodine receptor (RyR) and has broad application prospects. Accordingly, it is very important to evaluate the toxicity of cyantraniliprole to earthworms (Eisenia fetida) because of their vital role in maintaining a healthy soil ecosystem. In this study, an experiment was set up, using four concentrations (0.1, 1, 5, and 10 mg/kg) and solvent control group (0 mg/kg), to investigate the ecotoxicity of cyantraniliprole to earthworms. Our results showed that, after 28 days of exposure to cyantraniliprole, both cocoon production and the number of juvenile earthworms had decreased significantly at concentrations of either 5 or 10 mg/kg. On day 14, we measured the activities of digestive enzymes and ion pumps in the intestinal tissues of earthworms. These results revealed that cyantraniliprole exposure caused intestinal damage in earthworm, specifically changes to its intestinal enzyme activity and calcium ion content. Cyantraniliprole could lead to proteins' carbonylation under the high-dose treatments (i.e., 5 mg/kg, 10 mg/kg). At the same time, we also found that cyantraniliprole can cause the abnormal expression of key functional genes (including HSP70, CAT, RYR, ANN, and CAM genes). Moreover, the transcriptomics data showed that exposure to cyantraniliprole would affect the synthesis of carbohydrates, proteins and lipids, as well as their absorption and transformation, while cyantraniliprole would also affect signal transduction. In general, high-dose exposure to cyantraniliprole causes reproductive toxicity, genotoxicity, and intestinal damage to earthworms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111824DOI Listing

Publication Analysis

Top Keywords

exposure cyantraniliprole
16
cyantraniliprole
11
earthworms eisenia
8
eisenia fetida
8
cyantraniliprole earthworms
8
concentrations 10 mg/kg
8
intestinal damage
8
cyantraniliprole affect
8
earthworms
6
exposure
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!