Performance of clayware Biophotovoltaics (BPVs) with three variants of inocula namely anoxygenic photosynthetic bacteria (APB) rich Effective microbes (EM), Up-flow anaerobic sludge blanket reactor (UASB) sludge, SUPER-MIX the blend of EM and UASB inoculum were evaluated on the basis of electrical output and pollutant removal. SUPER-MIX inocula with microbial community comprising of 28.42% APB and 71.58% of other microbes resulted in peak power density of 275 mW/m, 69.3 ± 1.74% Coulombic efficiency and 91 ± 3.96% organic matter removal. The higher performance of the SUPER-MIX than EM and UASB inocula was due to the syntrophic associations of the various APBs and other heterogenous microorganisms in perfect blend which improved biocatalytic electron transfer, electro-kinetic activities with higher redox current and bio-capacitance. The promising performance of clayware BPVs with SUPER-MIX inocula indicate the possibility of BPVs to move towards the scale-up process to minimize the investment towards pure culture by effective blending strategies of inocula.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.124564DOI Listing

Publication Analysis

Top Keywords

clayware biophotovoltaics
8
performance clayware
8
super-mix inocula
8
inocula
6
blending microbial
4
microbial inocula
4
inocula effective
4
effective strategy
4
performance
4
strategy performance
4

Similar Publications

Performance of clayware Biophotovoltaics (BPVs) with three variants of inocula namely anoxygenic photosynthetic bacteria (APB) rich Effective microbes (EM), Up-flow anaerobic sludge blanket reactor (UASB) sludge, SUPER-MIX the blend of EM and UASB inoculum were evaluated on the basis of electrical output and pollutant removal. SUPER-MIX inocula with microbial community comprising of 28.42% APB and 71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!