Energy and environmental applications of Sn/Ti doped α-FeO@CuO/CuO photoanode under optimized photoelectrochemical conditions.

Environ Pollut

School of Nano & Materials Science and Engineering, Kyungpook National University, 2559, Gyeongsang-daero, Sangju, Gyeongbuk, South Korea; Research Institute of Environmental Science & Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, South Korea; Department of Advanced Science and Technology Convergence, Kyungpook National University, 37224, Sangju, Gyeongsangbuk-do, Republic of Korea. Electronic address:

Published: February 2021

The most promising technique for directly converting solar energy into clean fuels and environmental remediation by organic dye degradation is photoelectrochemical (PEC) process. We introduced Sn/Ti doped α-FeO@CuO heterojunction photoanode with complete optimization for PEC hydrogen (H) generation and organic dye degradation. Improvement of photocurrent photo and reducing overpotentials under optimized conditions lead to enhancing PEC performances, degradation efficiency of organic compounds, and H generation generation rate. The optimized heterojunction photoanode (5TiFe@CuO-D) showed IPCE exceeding 42% compared with pristine hematite (Fe-800) nanostructures (28%). Additionally, all the optimized photoanodes showed higher PEC stability for 10 h. Time-resolved PL spectra confirm the improved average lifetime for heterojunction photoanodes, supporting the enhanced PEC performance. Optimized 5TiFe@CuO-D material achieved PEC H generation of ∼300 μL h.cm which is two times higher than pristine hematite's activity (150 μL h.cm) and almost 99% degradation efficiency within 120 min of irradiation time. Therefore, a state-of-the-art study has been explored for hematite-based heterojunction photoanodes reflecting the superior PEC performance and hydrogen, methyl orange (MO) dye degradation activities. The improved results were reported because of stable morphology and better crystallinity acquired through systematic investigation of thermal effects and hydrothermal duration, improved electrical properties by Sn/Ti doping into the lattice of α-FeO and optimization of CuO deposition methods. The formation of well-defined heterojunction minimizes the recombination of the charge carrier and leads to effective transportation of excited electrons for the enhanced PEC performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.116318DOI Listing

Publication Analysis

Top Keywords

dye degradation
12
pec performance
12
sn/ti doped
8
organic dye
8
pec
8
heterojunction photoanode
8
degradation efficiency
8
heterojunction photoanodes
8
enhanced pec
8
optimized
5

Similar Publications

Chemoprevention is one of the accessible strategies for preventing, delaying or reversing cancer processing utilizing chemical intervention of carcinogenesis. NAD(P)H quinone oxidoreductase 1 (NQO1) is a xenobiotic metabolizing cytosolic enzyme/protein with important functional properties towards oxidation stress, supporting its ability in detoxification/chemoprotective role. A set of 3,5-diylidene-4-piperidones (as curcumin mimics) bearing alkyl sulfonyl group were synthesized with potential NQO1 induction properties.

View Article and Find Full Text PDF

Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy.

Nat Commun

January 2025

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.

Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.

View Article and Find Full Text PDF

A bio-fabrication approach is a novel way to develop chitosan-stabilized magnesium oxide nanomaterials (cMgO-NMs). The process involves utilizing polymeric chitosan as the reducing and stabilizing agent. The characteristics of the developed cMgO-NMs were determined using various spectroscopical techniques.

View Article and Find Full Text PDF

Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.

View Article and Find Full Text PDF

Ischemic stroke (IS) often causes fearful sequela, even death. Curcumin was beneficial to IS, but its underlying molecular mechanism is unclear. Mice were subjected to middle cerebral artery occlusion (MCAO) surgery, and BV-2 cells were treated with oxygen-glucose deprivation/reoxygenation (OGD/R) induction to establish IS models in vivo and in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!