AI Article Synopsis

  • Two proteins from bacteriophage T4, P7 and P8, have been purified, and a plasmid containing their genes was created to produce these proteins in E. coli.
  • Their interaction, along with another protein P10, follows a specific sequence to form a baseplate assembly intermediate, which was confirmed through in vitro experiments.
  • The study provides insights into the interaction dynamics of these proteins, establishing a basis for further research on the assembly process of bacteriophage structures.

Article Abstract

Two bacteriophage T4 proteins, P7 and P8, which are components of the phage baseplate have been purified to apparent homogeneity. P7 and P8 are the protein products of T4 genes 7 and 8. A plasmid has been constructed which contains approximately 5 kilobases of T4 DNA, including genes 7 and 8, under the control of the tac promoter. Induction of Escherichia coli W3110iQ cells containing this plasmid resulted in the production of functional P7 and P8. Standard protein isolation procedures were used to purify both P7 and P8 from extracts of induced cells. In T4-infected cells, these two proteins and P10 interact in a strictly ordered sequential manner (P10 + P7----P10/P7,P10/P7 + P8----P10/P7/P8) to form an intermediate in the baseplate assembly pathway. The three purified proteins assembled in vitro to form a limited number of oligomeric species, as determined by nondenaturing gel electrophoresis. P10 and P7 interacted in vitro to form two assemblies with distinct electrophoretic mobilities, both containing P10 and P7. Addition of P8 to this mixture resulted in the disappearance of both P10/P7 species and the appearance of a single new assembly with a different electrophoretic mobility. These interactions occurred without the addition of any catalyst or cofactors. Isolated P11 appeared to add as predicted to the in vitro-formed complexes without affecting the formation of the two P10/P7 or the single P10/P7/P8 intermediates. Interactions between P7 and P8 in the absence of P10 or interactions between P10 and P8 in the absence of P7 could not be detected. These data indicate that purified P10, P7, and P8 interact in vitro in a manner completely in accord with the published assembly pathway and thus establish a system for further study of the regulation of the formation of this assembly intermediate in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC250549PMC
http://dx.doi.org/10.1128/JVI.62.2.400-406.1988DOI Listing

Publication Analysis

Top Keywords

assembly intermediate
8
p10 interact
8
assembly pathway
8
vitro form
8
p10
7
vitro
5
assembly
5
isolation bacteriophage
4
bacteriophage baseplate
4
proteins
4

Similar Publications

Mating system of a vector of .

Curr Res Parasitol Vector Borne Dis

January 2025

Western University of Health Sciences, 200 Mullins Dr, Lebanon, OR, 97355, USA.

snails are intermediate hosts for schistosome parasites, which cause morbidity and mortality in humans worldwide. We aimed to determine the mating system of , a hermaphroditic vector of schistosomiasis in the African Great Lakes, with the goal of informing the design of genetic studies such as linkage mapping to improve genome assembly and genetic association studies to identify snail resistance genes. To determine the relative rates of outcrossing selfing, we assayed the progeny of experimental crosses of snails in the laboratory using a PCR and restriction enzyme digest to determine snail genotype and parentage.

View Article and Find Full Text PDF

Self-assembly processes of 2D Au(I)-S(CH)COOH lamellae.

Nanoscale

January 2025

State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Solving the assembled structure of Au(I)-thiolate linear coordination polymers has been a challenging task as they generally lack good crystallinity. This has prevented the elucidation of their assembly processes at the molecular level. In this paper, selected area electron diffraction (SAED) patterns of two-dimensional (2D) Au(I)-S(CH)COOH (Au(I)-MPA) lamellae are obtained by applying cryogenic transmission electron microscopy.

View Article and Find Full Text PDF

We present a model to describe the concentration-dependent growth of protein filaments. Our model contains two states, a low entropy/high affinity ordered state and a high entropy/low affinity disordered state. Consistent with experiments, our model shows a diffusion-limited linear growth regime at low concentration, followed by a concentration-independent plateau at intermediate concentrations, and rapid disordered precipitation at the highest concentrations.

View Article and Find Full Text PDF

Innovating nanocatalysts with both high intrinsic catalytic activity and high selectivity is crucial for multi-electron reactions, however, their low mass/electron transport at industrial-level currents is often overlooked, which usually leads to low comprehensive performance at the device level. Herein, a Cl/O etching-assisted self-assembly strategy is reported for synthesizing a self-assembled gap-rich PdMn nanofibers with high mass/electron transport highway for greatly enhancing the electrocatalytic reforming of waste plastics at industrial-level currents. The self-assembled PdMn nanofiber shows excellent catalytic activity in upcycling waste plastics into glycolic acid, with a high current density of 223 mA cm@0.

View Article and Find Full Text PDF

Iron-sulfur clusters are essential metallocofactors synthesized by multiprotein machineries via an unclear multistep process. Here we report a step-by-step dissection of the [2Fe-2S] cluster assembly process by the Escherichia coli iron-sulfur cluster (ISC) assembly machinery using an in vitro reconstituted system and a combination of biochemical and spectroscopic techniques. We show that this process is initiated by iron binding to the scaffold protein IscU, which triggers persulfide insertion by the cysteine desulfurase IscS upon the formation of a complex with IscU.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!