Role of hydrogenated moiety in redox treatability of 6:2 fluorotelomer sulfonic acid in chrome mist suppressant solution.

J Hazard Mater

State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China.

Published: April 2021

6:2 Fluorotelomer sulfonic acid (6:2 FTS) is used as alternative to perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) for different purposes such as chrome mist suppressant (CMS) and active ingredient in fire-fighting foams. In this study, degradability of 6:2 FTS under ultraviolet/persulfate (UV/PS) and ultraviolet/sulfite (UV/SF), which are typical technologies for advanced oxidation and reduction, were investigated respectively. Due to the hydrogenated moiety, 6:2 FTS was decomposed completely by UV/PS within 10 min, forming a mixture of short-chain perfluoroalkyl carboxylic acids with variable chain length (2-7 carbon atoms). Such oxidation products account for > 50% organofluorine of 6:2 FTS unmineralized portion. 6:2 FTS degradability under reductive UV/SF system was dramatically slowed down by the hydrogenated moiety, which lowered electron affinity and, consequently, reactivity with aqueous electron (e‾) produced by UV/SF. Fluorine mass balance showed that degradation intermediates were almost negligible: most of decomposed 6:2 FTS fluorine was converted to fluoride. A real 6:2 FTS-based CMS solution prepared from a commercial product was also tested. Both types of treatment were effective and in good agreement with the trends observed for tests with sole 6:2 FTS. Moreover, experimental results highlighted a remarkable amount of identifiable (like 4:2 FTS, 8:2 FTS and other per-/polyfluoroalkyl substances) and unidentifiable components in the CMS mixture. Indeed, fluoride concentration under UV/SF (73.8 mg/L) and UV/PS (44.9 mg/L) treatment were both higher than the estimated total concentration (<23 mg/L, according to 6:2 FTS concentration). Results strongly suggest that an oxidation pretreatment followed by reduction might be a better way to degrade and defluorinate 6:2 FTS and other precursors with non-fluorinated moieties, rather than employing single reduction or oxidation technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124875DOI Listing

Publication Analysis

Top Keywords

hydrogenated moiety
12
sulfonic acid
12
fts
9
fluorotelomer sulfonic
8
chrome mist
8
mist suppressant
8
role hydrogenated
4
moiety redox
4
redox treatability
4
treatability fluorotelomer
4

Similar Publications

Flotation is an interfacial process involving gas, liquid, and solid phases, where polar ionic promoters significantly influence both gas-liquid and solid-liquid interfaces during low-rank coal (LRC) flotation. This study examines how the structures of hydrophilic groups in cation-anion mixed promoters affect the interfacial flotation performance of LRC pulp using flotation tests, surface tension tests, wetting heat tests, and molecular dynamics simulations. Results indicate that cation-anion mixed promoters enhance the LRC floatability to varying degrees.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.

Background: The present study recapitulates the potency of the novel synthesized piperazine-benzoquinone derivative as a lead molecule selectively targeting AChE along with the antioxidative potential for the management of cognitive decline in Alzheimer's disease.

Method: Novel piperazine-benzoquinone derivative was synthesized implementing appropriate synthetic procedures and was characterized by various spectral and elemental techniques. The purity of this synthetic analogue was ascertained by TLC, melting point determination and elemental analyses.

View Article and Find Full Text PDF

Diatomic catalysts featuring a tunable structure and synergetic effects hold great promise for various reactions. However, their precise construction with specific configurations and diverse metal combinations is still challenging. Here, a selective etching and metal ion adsorption strategy is proposed to accurately assign a second metal atom (M) geminal to the single atom site (M-N) for constructing diatomic sites (e.

View Article and Find Full Text PDF

Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol.

View Article and Find Full Text PDF

The cation of the title salt, CHNO ·Br, has a dihedral angle of 24.26 (6)° between its fused imidazole and 4-nitro-phenyl rings and the N-C-C-O torsion angle associated with the hy-droxy-ethyl substituent is 60.15 (17)°.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!