A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamics of nonspherical bubble in compressible liquid under the coupling effect of ultrasound and electrostatic field. | LitMetric

Dynamics of nonspherical bubble in compressible liquid under the coupling effect of ultrasound and electrostatic field.

Ultrason Sonochem

College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.

Published: March 2021

A model for a nonspherical bubble in a compressible liquid under the coupling effect of ultrasound and electrostatic field was developed in this study. The following assumptions are made: (1) the bubble undergoes adiabatic oscillation; (2) the gravity of the liquid is negligible; (3) the bubble is insulating. If the speed of sound approaches infinity (c→∞), the equation set is reduced to the equation set for an incompressible liquid. We found that, under ultrasonic irradiation coupled with electric stress, a nonspherical bubble cannot oscillate steadily in the liquid. The bubble is bound to collapse during several cycles. The presence of electric stress reduces the surface tension at the bubble wall, which produces a larger maximum bubble-radius during the rarefaction cycle and a smaller minimum bubble-radius during the compression cycle. Consequently, during the collapse, both the gas pressure and the temperature in the bubble center increase substantially, if the bubble is exposed to both ultrasound and electrostatic field instead of ultrasound alone. In addition, the cavitation threshold of the bubble within an electrostatic field decreases significantly, compared to the bubble without an electrostatic field. In general, bubble cavitation occurs more easily and violently in the liquid after the introduction of an electrostatic field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187881PMC
http://dx.doi.org/10.1016/j.ultsonch.2020.105371DOI Listing

Publication Analysis

Top Keywords

electrostatic field
24
bubble
12
nonspherical bubble
12
ultrasound electrostatic
12
bubble compressible
8
compressible liquid
8
liquid coupling
8
coupling ultrasound
8
equation set
8
electric stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!