A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of an outcome using NETwork Clusters (NET-C). | LitMetric

Prediction of an outcome using NETwork Clusters (NET-C).

Comput Biol Chem

Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, NH. Electronic address:

Published: February 2021

Birth weight is a key consequence of environmental exposures and metabolic alterations and can influence lifelong health. While a number of methods have been used to examine associations of trace element (including essential nutrients and toxic metals) concentrations or metabolite concentrations with a health outcome, birth weight, studies evaluating how the coexistence of these factors impacts birth weight are extremely limited. Here, we present a novel algorithm NETwork Clusters (NET-C), to improve the prediction of outcome by considering the interactions of features in the network and then apply this method to predict birth weight by jointly modelling trace element and cord blood metabolite data. Specifically, by using trace element and/or metabolite subnetworks as groups, we apply group lasso to estimate birth weight. We conducted statistical simulation studies to examine how both sample size and correlations between grouped features and the outcome affect prediction performance. We showed that in terms of prediction error, our proposed method outperformed other methods such as (a) group lasso with groups defined by hierarchical clustering, (b) random forest regression and (c) neural networks. We applied our method to data ascertained as part of the New Hampshire Birth Cohort Study on trace elements, metabolites and birth outcomes, adjusting for other covariates such as maternal body mass index (BMI) and enrollment age. Our proposed method can be applied to a variety of similarly structured high-dimensional datasets to predict health outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867575PMC
http://dx.doi.org/10.1016/j.compbiolchem.2020.107425DOI Listing

Publication Analysis

Top Keywords

birth weight
20
trace element
12
prediction outcome
8
network clusters
8
clusters net-c
8
group lasso
8
proposed method
8
birth
7
weight
5
prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!