Previous studies have shown that an effective damage detection method for model rats from macro individual to micro cellular, was applied to assess the groundwater quality from rare earth metals tailings seepage. To determine whether it is universal method for measuring the toxicological damage caused by contaminated water around other mining areas to organisms at the organ-tissue-cell-chromosome-gene level. In this study, a rare earth mining area in North China was used as research base. Firstly, the core pollution factors in surface water and groundwater from five different sites were analyzed. Then, the degree of toxicological damage to Sprague-Dawley (SD) rats caused by contaminated water were systematically assessed using biological methods. Finally, the possible molecular mechanism of toxicological damage was further discussed. The synthesis results showed that the main pollution factors were some metal elements (Mn, Zn, Co, Ni) and rare earth elements (Sc, Nb, La, Ce, Pr, Dy and Y), which might cause significant DNA genetic damage to SD rats. Further, differential gene expression profile showed that DNA damage-inducible genes (Gadd45g and Ddit4), immunity-related genes (Mpo, Slpi and Elane) and two cancer-related genes (Mmp8 and Ltf) were used as a new prognostic and predictive biomarker for biosafety assessment. Therefore, this study provides a possible molecular mechanism for the toxicological damage, and also it provides a universal method to scientifically and effectively evaluate the water pollution risk for other mining areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.144123 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, CHINA.
Tumor immunotherapy has been widely used clinically, but it is still hindered by weak antitumor immunity and immunosuppressive tumor microenvironment (TME). Here, a kind of simple disodium hydrogen phosphate nanoparticle (Na2HPO4 NP) is prepared to "accelerate" tumor immunotherapy by "increasing throttle" and "relaxing brake" simultaneously. The obtained Na2HPO4 NPs release a large amount of Na+ and HPO42- ions within tumor cells, thereby activating the caspase 1/GSDMD-mediated pyroptosis pathway to achieve immune activation.
View Article and Find Full Text PDFSci Total Environ
January 2025
Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China.
Selective recovery of rare earth elements (REEs) from environmental waste is strategically significant. Herein, Ce(III) imprinted EDTA modified chitosan-magnetic graphene oxide (IIP-EDTA-CS-MGO) was prepared for selective recovery of Ce(III). Furthermore, adsorption mechanism was clarified based on versatile adsorption fittings and spectroscopic tests.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline (TC) homologues was fabricated based on N-CDs-Eu complex. In the sensing system, N-CDs act as a sensitizer of Eu and significantly enhance the fluorescence of TC-Eu complex approximate 40-fold owing to the synergistic effect of antenna effect (AE) and fluorescence resonance energy transfer (FRET). A paper sensor integrated with a smartphone platform is further fabricated for on-site measurement of TC.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
Methicillin-resistant (MRSA) is a refractory pneumonia-causing pathogen due to the antibiotic resistance and the characteristics of persisting inside its host cell. Lysostaphin is a typical bacteriolytic enzyme for degrading bacterial cell walls via hydrolysis of pentaglycine cross-links, showing potential to combat multidrug-resistant bacteria. However, there are still grand challenges for native lysostaphin because of its poor shelf stability and limited bioavailability.
View Article and Find Full Text PDFMater Horiz
January 2025
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Circularly polarized luminescence (CPL) materials have developed rapidly in recent years due to their wide application prospects in fields like 3D displays and anti-counterfeiting. Utilizing energy transfer processes to transfer chirality has been proven as an efficient way to obtain CPL materials. However, the physics behind energy-transfer induced CPL is still not clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!