Background: Metformin, a first-line oral antidiabetic agent that has shown promising results in terms of treating childhood and adolescent obesity, might influence the composition of the gut microbiota. We aimed to evaluate whether the gut microbiota of non-diabetic children with obesity changes after a metformin intervention.
Methods: The study was a multicenter and double-blind randomized controlled trial in 160 children with obesity. Children were randomly assigned to receive either metformin (1 g/day) or placebo for 6 months in combination with healthy lifestyle recommendations in both groups. Then, we conducted a metagenomic analysis in a subsample obtained from 33 children (15 metformin, 18 placebo). A linear mixed-effects model (LMM) was used to determine the abundance changes from baseline to six months according to treatment. To analyze the data by clusters, a principal component analysis was performed to understand whether lifestyle habits have a different influence on the microbiota depending on the treatment group.
Results: Actinobacteria abundance was higher after placebo treatment compared with metformin. However, the interaction time x treatment just showed a trend to be significant (4.6% to 8.1% after placebo vs. 3.8 % to 2.6 % after metformin treatment, p = 0.055). At genus level, only the abundance of Bacillus was significantly higher after the placebo intervention compared with metformin (2.5% to 5.7% after placebo vs. 1.5 % to 0.8 % after metformin treatment, p = 0.044). Furthermore, different ensembles formed by Firmicutes, Bacteroidetes, and Verrucomicrobia were found according to the interventions under a similar food consumption.
Conclusion: Further studies with a large sample size controlled by lifestyle patterns are required in obese children and adolescents to clarify whether metformin might trigger gut microbiota alterations.
Trial Registration: Registered on the European Clinical Trials Database (EudraCT, ID: 2010-023061-21) on 14 November 2011.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2020.111117 | DOI Listing |
Gut Microbes
December 2025
Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).
View Article and Find Full Text PDFNat Med
January 2025
Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
Up to 50-70% of patients with liver cirrhosis develop hepatic encephalopathy (HE), which is closely related to gut microbiota dysbiosis, with an unclear mechanism. Here, by constructing gut-brain modules to assess bacterial neurotoxins from metagenomic datasets, we found that phenylalanine decarboxylase (PDC) genes, mainly from Ruminococcus gnavus, increased approximately tenfold in patients with cirrhosis and higher in patients with HE. Cirrhotic, not healthy, mice colonized with R.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
Colic and diarrhea are common gastrointestinal (GI) disorders in captive Asian elephants, which can severely impact health and lead to mortality. Gut dysbiosis, indicated by alterations in gut microbiome composition, can be observed in individuals with GI disorders. However, changes in gut microbial profiles of elephants with GI disorders have never been investigated.
View Article and Find Full Text PDFNat Metab
January 2025
Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.
View Article and Find Full Text PDFNat Microbiol
January 2025
Sitala Bio, Cambridge, UK.
Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!