The understanding of mechanistic insights in environmental remediation and mitigation systems is attracting larger attention, in recent days. Here in, aluminium substituted copper ferrite impregnated rGO hybrid (CAF-rGO) is verified to understand the adsorption/electrosorption mechanism of arsenic in aqueous systems. Near-surface study (XPS: As 3d, Cu 2p, Fe 2p, Al 2p, O 1s, C 1s) proposes redox, and ligand exchange reactions between contaminant, and CAF-rGO. Adsorption capacities are observed around 128.8 mg g [As(III)], 153.5 mg g [As(V)] with Freundlich model isotherms. Kinetics study follows the PSO model with influence of solar light (> 420 nm). Cyclic voltammetry (CV) analysis in different molarity conditions observed with signals around +0.1 and -0.6 V confirm the redox abilities, and N/O purged environments understood that electrosorption occurred through both reduction and sorption. Electrosorption study with pH variation shows the effect of protonation on the redox activity of individual arsenic species. Consistent signal around -0.6 ± 0.05 V in all the CV plots (i.e., Molarity, Environment, pH) recommends the usage of CAF-rGO for arsenic mitigation. Possible influence of photo-current (∼40 μA/cm at ∼ 0 V) towards As(III/V) decontamination is understood though photoelectrochemical analysis. Impedance plot shows low-resistance and better diffusion of arsenic oxy-anions during light irradiation. Synergistic nature of CAF-rGO generates reactive oxygen species (i.e., OH/O/O) in mitigating highly toxic As(III) species is also detailed in the present work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.129246 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!