Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. In this study, we employed prenatally exposed to valproic acid (VPA) to establish a validated ASD mouse model and found impaired inhibitory gamma-aminobutyric acid (GABAergic) neurotransmission through a presynaptic mechanism in these model mice, which was accompanied with decreased GABA release and GABA-A and GABA-B receptor subunits expression. And acute administration of individual GABA-A or GABA-B receptor agonists partially reversed autistic-like behaviors in the model mice. Furthermore, acute administration of the combined GABA-A and GABA-B receptor agonists palliated sociability deficits, anxiety and repetitive behaviors in the animal model of autistic-like behaviors, demonstrating the therapeutic potential of above cocktail in the treatment of ASD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2020.113094 | DOI Listing |
Arch Razi Inst
June 2024
Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Gastrointestinal dysfunction is a severe and common complication in diabetic patients. Some evidence shows that gamma-aminobutyric acid (GABA) and glutamate contribute to diabetic gastrointestinal abnormalities. Therefore, we examined the impact of prolonged treatment with insulin and magnesium supplements on the expression pattern of GABA type A (GABA-A), GABA-B, and N-methyl-D-aspartate (NMDA) glutamate receptors as well as nitric oxide synthase 1 (NOS-1) in the stomach of type 2 diabetic rats.
View Article and Find Full Text PDFProg Neurobiol
December 2024
Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Dusseldorf, Germany.
Neurotransmitter receptors are key molecules in signal transmission in the adult brain, and their precise spatial and temporal balance expressions also play a critical role in normal brain development. However, the specific balance expression of multiple receptors during hippocampal development is not well characterized. In this study, we used quantitative in vivo receptor autoradiography to measure the distributions and densities of 18 neurotransmitter receptor types in the mouse hippocampal complex at postnatal day 7, and compared them with the expressions of their corresponding encoding genes.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China.
GABA (γ-aminobutyric acid) is a non-protein amino acid that occurs naturally in the human brain, animals, plants and microorganisms. It is primarily produced by the irreversible action of glutamic acid decarboxylase (GAD) on the α-decarboxylation of L-glutamic acid. As a major neurotransmitter in the brain, GABA plays a crucial role in behavior, cognition, and the body's stress response.
View Article and Find Full Text PDFJ Neuroimmunol
December 2024
Department of Neurology, St. Vincent's University Hospital, Elm Park, Dublin, Ireland. Electronic address:
Many forms of autoimmune encephalitis are mediated by neuronal cell-surface directed autoantibodies. The co-occurrence of four neuronal cell-surface antibodies in a single patient is exceptionally rare. We report a patient who had a severe encephalitis associated with antibodies to NMDA, Glycine, GABA and GABA receptors.
View Article and Find Full Text PDFbioRxiv
November 2024
Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
Bestrophin 1 (BEST1) is chloride channel expressed in the eye, central nervous system (CNS), and other tissues in the body. A link between BEST1 and the principal inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been proposed. The most appreciated receptors for extracellular GABA are the GABA G-protein coupled receptors and the pentameric GABA chloride channels, both of which have fundamental roles in the CNS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!