Exacerbation of COVID-19 pandemic may lead to acute shortage of ventilators, which may require shared use of ventilator as a lifesaving concept. Two model lungs were ventilated with one ventilator to i) test the adequacy of individual tidal volumes via capnography, ii) assess cross-breathing between lungs, and iii) offer a simulation-based algorithm for ensuring equal tidal volumes. Ventilation asymmetry was induced by placing rubber band around one model lung, and the uneven distribution of tidal volumes (VT) was counterbalanced by elevating airflow resistance (HR) contralaterally. VT, end-tidal CO concentration (ETCO), and peak inspiratory pressure (Ppi) were measured. Unilateral LC reduced VT and elevated ETCO on the affected side. Under HR, VT and ETCO were re-equilibrated. In conclusion, capnography serves as simple, bedside method for controlling the adequacy of split ventilation in each patient. No collateral gas flow was observed between the two lungs with different time constants. Ventilator sharing may play a role in emergency situations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832691 | PMC |
http://dx.doi.org/10.1016/j.resp.2020.103611 | DOI Listing |
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue
December 2024
Department of Public Utilities Development, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.
Objective: To explore the effects of veno-venous extra corporeal carbon dioxide removal (V-V ECCOR) on local mechanical power and gas distribution in the lungs of patients with mild to moderate acute respiratory distress syndrome (ARDS) receiving non-invasive ventilation.
Methods: Retrospective research methods were conducted. Sixty patients with mild to moderate ARDS complicated with renal insufficiency who were transferred to the respiratory intensive care unit (RICU) through the 96195 platform critical care transport green channel from January 2018 to January 2020 at the collaborative hospitals of Henan Provincial People's Hospital were enrolled.
J Cardiothorac Surg
January 2025
Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Background: Several methods for blindly positioning bronchial blockers (BBs) for one-lung ventilation (OLV) have been proposed. However, these methods do not reliably ensure accurate positioning and proper direction. Here, we developed a clinically applicable two-stage maneuver by modifying a previously reported one-stage maneuver for successful insertion of a BB at the appropriate depth and direction in patients requiring lung isolation where a flexible bronchoscope (FOB) is not applicable.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Department of Kinesiology, James Madison University, Harrisonburg, Virginia, USA.
To assess the impact of thoracic load carriage on the physiological response to exercise in hypoxia. Healthy males (n = 12) completed 3 trials consisting of 45 min walking in the following conditions: (1) unloaded normoxia (UN; FO:20.93%); (2) unloaded hypoxia (UH; FO:~13.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
Background: Mixed exhaled air has been widely used to determine exhaled propofol concentrations with online analyzers, but changes in dead space proportions may lead to inaccurate assessments of critical drug concentration data. This study proposes a method to correct propofol concentration in mixed air by estimating pulmonary dead space through reconstructing volumetric capnography (Vcap) from time-CO and time-volume curves, validated with vacuum ultraviolet time-of-flight mass spectrometry (VUV-TOF MS).
Methods: Existing monitoring parameters, including time-volume and time-CO curves, were used to determine Vcap.
BMC Anesthesiol
January 2025
Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, Fujian, 350001, PR China.
Background: Limited information is available regarding the application of lung-protective ventilation strategies during one-lung ventilation (OLV) across mainland China. A nationwide questionnaire survey was conducted to investigate this issue in current clinical practice.
Methods: The survey covered various aspects, including respondent demographics, the establishment and maintenance of OLV, intraoperative monitoring standards, and complications associated with OLV.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!