Microplastics (MPs) are receiving increased attention as a harmful environmental pollutant. Studies have investigated that MPs have reproductive toxicity, but the mechanism is little known. Here, we aimed to investigate the effects of polystyrene microplastics (PS-MPs) on ovary in rats and the underlying molecular mechanisms. in vivo, thirty-two female Wistar rats were exposed to 0.5 μm PS-MPs at different concentrations (0, 0.015, 0.15 and 1.5 mg/d) for 90 days. And then, all animals were sacrificed, ovaries and blood were collected for testing. in vitro, granulosa cells (GCs) were separated from rat ovary and treated with 0、1、5、25 μg/mL PS-MPs and reactive oxygen species (ROS) inhibitor N-Acetyl-l-cysteine (NAC) respectively. Our results showed that PS-MPs could enter into GCs and result in the reducing of growing follicles number. And the Enzyme-linked immunosorbent assay (ELISA) manifested that PS-MPs could obviously decrease the level of anti-Müllerian hormone (AMH). In addition, PS-MPs induced oxidative stress, apoptosis of GCs and ovary fibrosis evidenced by assay kits, flow cytometry, immunohistochemistry, Masson's trichrome and Sirius red staining. Moreover, the western blot assay manifested that PS-MPs exposure significantly increased the expression levels of Wnt/β-Catenin signaling pathways-related proteins (Wnt, β-catenin, p-β-catenin) and the main fibrosis markers (transforming growth factor-β (TGF-β), fibronectin, α-smooth muscle actin (α-SMA). Additionally, the expression levels of Wnt and p-β-catenin, apoptosis of GCs decreased after NAC treatment. In summary, polystyrene microplastics cause fibrosis via Wnt/β-Catenin signaling pathway activation and granulosa cells apoptosis of ovary through oxidative stress in rats, both of which ultimately resulted in decrease of ovarian reserve capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2020.152665 | DOI Listing |
Nanomaterials (Basel)
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
Microplastics, defined as plastic fragments smaller than 5 mm, degrade from larger pollutants, with nanoscale microplastic particles presenting significant biological interactions. This study investigates the toxic effects of polystyrene nanoplastics (PS-NPs) on juvenile mice, which were exposed through lactation milk and drinking water at concentrations of 0.01 mg/mL, 0.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
Microplastics (MPs) are emerging pollutants of global concern, while heavy metals such as copper ions (Cu) are longstanding environmental contaminants with well-documented toxicity. This study investigates the independent and combined effects of polystyrene microplastics (PS-MPs) and Cu on the physiological and biochemical responses of rice seedlings ( L.), a key staple crop.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.
Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia.
Biodegradation of microplastics facilitated by natural marine biofouling is a promising approach for ocean bioremediation. However, implementation requires a comprehensive understanding of how interactions between the marine microbiome and dominant microplastic debris types (e.g.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
University of West Florida, 11000 University Parkway, Pensacola, FL 32514, United States of America. Electronic address:
Microplastics, small pieces of plastic measuring less than five millimeters, have spread to all ecosystems, even those in the Southern Ocean around Antarctica. In particular, microplastics have been found contaminating water in emerging fjords, or inlets created by deglaciation, along the Antarctic Peninsula. Microplastics contamination puts fjord communities, which are unique and dominated by benthic species, at high risk for microplastic exposure leading to issues with feeding, endocrine disruption, and exposure to adsorbed toxins, all of which lower fecundity and survivability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!