Exposure to stress activates glucocorticoid receptors in the brain and facilitates the onset of multitude psychiatric disorders. It has been shown that FK506 binding protein 51 (FKBP5) expression increases during glucocorticoid receptor (GR) activation in various brain regions including the medial prefrontal cortex (mPFC). FKBP5 knockout (KO) mice are reported to be resilient to stress, however, it remains uninvestigated whether FKBP5 loss affects neurotransmission and if so, what the functional consequences are. Here, we examined the impact of FKBP5 deletion in synaptic transmission of the mPFC. We found that GR activation significantly decreased excitatory neurotransmission in the mPFC, which was completely abolished upon FKBP5 deletion, in consistent with behavioral resilience observed in FKBP5 KO mice. Even though FKBP5 loss has minimal impact on neural excitability, we found that FKBP5 deletion distorts the excitatory/inhibitory balance in the mPFC. Our study suggests that FKBP5 deficiency leads to the mPFC insensitive to GR activation and provides a neurophysiological explanation for how FKBP5 deficiency may mediate stress resilience.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2020.12.020DOI Listing

Publication Analysis

Top Keywords

fkbp5 deficiency
12
fkbp5 deletion
12
fkbp5
10
impact fkbp5
8
glucocorticoid receptor
8
synaptic transmission
8
medial prefrontal
8
prefrontal cortex
8
fkbp5 loss
8
mpfc
5

Similar Publications

Perinatal protein malnutrition alters maternal behavior and leads to maladaptive stress response, neurodevelopmental delay and disruption on DNA methylation machinery in female mice offspring.

Horm Behav

August 2024

Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina. Electronic address:

Deficiencies in maternal nutrition have long-term consequences affecting brain development of the progeny and its behavior. In the present work, female mice were exposed to a normal-protein or a low-protein diet during gestation and lactation. We analyzed behavioral and molecular consequences of malnutrition in dams and how it affects female offspring at weaning.

View Article and Find Full Text PDF

Surgical crushing of stones alone has not addressed the increasing prevalence of kidney stones. A promising strategy is to tackle the kidney damage and crystal aggregation inherent in kidney stones with the appropriate therapeutic target. FKBP prolyl isomerase 5 (FKBP5) is a potential predictor of kidney injury, but its status in calcium oxalate (CaOx) kidney stones is not clear.

View Article and Find Full Text PDF

FKBP51-Hsp90 Interaction-Deficient Mice Exhibit Altered Endocrine Stress Response and Sex Differences Under High-Fat Diet.

Mol Neurobiol

March 2024

Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden.

FK506-binding protein 51 kDa (FKBP51), encoded by Fkbp5 gene, gained considerable attention as an important regulator of several aspects of human biology including stress response, metabolic dysfunction, inflammation, and age-dependent neurodegeneration. Its catalytic peptidyl-prolyl isomerase (PPIase) activity is mediated by the N-terminal FK506-binding (FK1) domain, whereas the C-terminal tetratricopeptide motif (TPR) domain is responsible for FKBP51 interaction with molecular chaperone heat shock protein 90 (Hsp90). To understand FKBP51-related biology, several mouse models have been created.

View Article and Find Full Text PDF

The transcriptional regulator KLF15 is necessary for myoblast differentiation and muscle regeneration by activating FKBP5.

J Biol Chem

October 2023

Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China. Electronic address:

Successful muscle regeneration following injury is essential for functional homeostasis of skeletal muscles. Krüppel-like factor 15 (KLF15) is a metabolic transcriptional regulator in the muscles. However, little is known regarding its function in muscle regeneration.

View Article and Find Full Text PDF

The FK506 binding protein 5 (FKBP5) is a co-chaperone that regulates the activity of the glucocorticoid receptor (GR) and has been reported to mediate stress resilience. This study aimed to determine the effects of deletion on acute stress-induced recognition memory impairment and hippocampal GR signaling. Wild-type and -knockout mice were subjected to acute uncontrollable stress induced by restraint and electrical tail shock.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!