Nature's masterfully synthesized biological materials take on greater relevance when viewed through the perspective of evolutionary abundance. The fact that beetles (order Coleoptera) account for a quarter of all extant lifeforms on Earth, makes them prime exponents of evolutionary success. In fact, their forewings are acknowledged as key traits to their radiative-adaptive success, which makes the beetle elytra a model structure for next-generation bioinspired synthetic materials. In this work, the multiscale morphological and mechanical characteristics of a variety of beetle species from the Cetoniinae subfamily are investigated with the aim of unraveling the underlying principles behind Nature's adaptation of the elytral bauplan to differences in body weight spanning three orders of magnitude. Commensurate with the integral implications of size variation in organisms, a combined material, morphological, and mechanical characterization framework, across spatial scales, was pursued. The investigation revealed the simultaneous presence of size-invariant strategies (chemical compositions, layered-fibrous architectures, graded motifs) as well as size-dependent features (scaling of elytral layers and characteristic dimensions of building blocks), synergistically combined to achieve similar levels of biomechanical functionality (stiffness, energy absorption, strength, deformation and toughening mechanisms) in response to developmental and selection constraints. The integral approach here presented seeks to shed light on Nature's solution to the problem of size variation, which underpins the diversity of beetles and the living world.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2020.12.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!