Objective: To investigate if the modification of human adipose-derived mesenchymal stem cells (hADSCs) by the antioxidants superoxide dismutase 2 (Sod2) and catalase (Cat) can attenuate the pathological conditions of intervertebral disc degeneration (IVD).
Methods: In vitro, MTT assay and qRT-PCR was used to detect cell proliferation and gene expressions in hADSCs transduced with Ad-null (an adenovirus vector containing no transgene expression cassette), Ad-Sod2 (recombinant adenovirus Sod2) and Ad-Cat. IVD mouse models were generated by needle puncture and treated with hADSCs with/without Ad-null/Ad-Sod2/Ad-Cat. X-ray evaluation, magnetic resonance imaging (MRI) analysis, histological analysis, immunohistochemistry, Western blots, ELISAs and qRT-PCR were performed.
Results: hADSCs transduced with Ad-Sod2 and Ad-Cat showed enhanced cell proliferation with the upregulation of SOX9, ACAN, and COL2. In vivo, IVD mice injected with hADSCs showed increased disc height index, MRI index and mean T2 intensities, as well as the attenuated histologic grading of the annulus fibrosus (AF) and NP accompanied by the upregulation of GAG and COL2, which were further improved in the Ad-Sod2 hADSC + IVD and Ad-Cat hADSC + IVD groups. Furthermore, the increased expression of IL-1β, IL-6 and TNF-α was reduced in IVD mice injected with hADSCs. Compared with the hADSC + IVD group, the Ad-Sod2 hADSC/Ad-Cat hADSC + IVD groups had lower expression of pro-inflammatory factors.
Conclusion: Modification of hADSCs by the antioxidants Sod2 and Cat improved the pathological condition of intervertebral disc tissues with increased GAG and COL2 expression, as well as reduced inflammation, thereby demonstrating a therapeutic effect in IVD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2020.118929 | DOI Listing |
Discov Med
October 2023
Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China.
Background: Intervertebral disc degeneration (IVD) is a pain-inflicting disorder, posing a serious threat to the elderly, and new therapies are urgently needed. In this study, we examined the potential therapeutic effect of mesenchymal stem cells (MSCs) transplantation on IVD.
Methods: Both human adipose-derived stem cells (hADSCs) and human bone marrow mesenchymal stem cells (hBMSCs) provided by a volunteer were non-contact co-cultured with the human nucleus pulposus cells (hNPCs) to determine the efficacy of hNPCs-oriented differentiation.
Mater Today Bio
February 2023
Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Intervertebral disc degeneration (IDD)-induced low back pain significantly influences the quality of life, placing a burden on public health systems worldwide. Currently available therapeutic strategies, such as conservative or operative treatment, cannot effectively restore intervertebral disc (IVD) function. Decellularized matrix (DCM) is a tissue-engineered biomaterial fabricated using physical, chemical, and enzymatic technologies to eliminate cells and antigens.
View Article and Find Full Text PDFLife Sci
February 2021
Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China. Electronic address:
Objective: To investigate if the modification of human adipose-derived mesenchymal stem cells (hADSCs) by the antioxidants superoxide dismutase 2 (Sod2) and catalase (Cat) can attenuate the pathological conditions of intervertebral disc degeneration (IVD).
Methods: In vitro, MTT assay and qRT-PCR was used to detect cell proliferation and gene expressions in hADSCs transduced with Ad-null (an adenovirus vector containing no transgene expression cassette), Ad-Sod2 (recombinant adenovirus Sod2) and Ad-Cat. IVD mouse models were generated by needle puncture and treated with hADSCs with/without Ad-null/Ad-Sod2/Ad-Cat.
J Biomed Mater Res A
December 2014
Department of Bioengineering, Biocompatibility and Tissue Regeneration Laboratory, Clemson University, Rhodes Engineering Research Center, Clemson, South Carolina, 29634.
Nucleus pulposus (NP) is a resilient and hydrophilic tissue which plays a significant role in the biomechanical function of the intervertebral disc (IVD). Destruction of the NP extracellular matrix (ECM) is observed during the early stages of IVD degeneration. Herein, we describe the development and initial characterization of a novel biomaterial which attempts to recreate the resilient and hydrophilic nature of the NP via the construction of a chemically stabilized elastin-glycosaminoglycan-collagen (EGC) composite hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!