Sod2 and catalase improve pathological conditions of intervertebral disc degeneration by modifying human adipose-derived mesenchymal stem cells.

Life Sci

Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China. Electronic address:

Published: February 2021

Objective: To investigate if the modification of human adipose-derived mesenchymal stem cells (hADSCs) by the antioxidants superoxide dismutase 2 (Sod2) and catalase (Cat) can attenuate the pathological conditions of intervertebral disc degeneration (IVD).

Methods: In vitro, MTT assay and qRT-PCR was used to detect cell proliferation and gene expressions in hADSCs transduced with Ad-null (an adenovirus vector containing no transgene expression cassette), Ad-Sod2 (recombinant adenovirus Sod2) and Ad-Cat. IVD mouse models were generated by needle puncture and treated with hADSCs with/without Ad-null/Ad-Sod2/Ad-Cat. X-ray evaluation, magnetic resonance imaging (MRI) analysis, histological analysis, immunohistochemistry, Western blots, ELISAs and qRT-PCR were performed.

Results: hADSCs transduced with Ad-Sod2 and Ad-Cat showed enhanced cell proliferation with the upregulation of SOX9, ACAN, and COL2. In vivo, IVD mice injected with hADSCs showed increased disc height index, MRI index and mean T2 intensities, as well as the attenuated histologic grading of the annulus fibrosus (AF) and NP accompanied by the upregulation of GAG and COL2, which were further improved in the Ad-Sod2 hADSC + IVD and Ad-Cat hADSC + IVD groups. Furthermore, the increased expression of IL-1β, IL-6 and TNF-α was reduced in IVD mice injected with hADSCs. Compared with the hADSC + IVD group, the Ad-Sod2 hADSC/Ad-Cat hADSC + IVD groups had lower expression of pro-inflammatory factors.

Conclusion: Modification of hADSCs by the antioxidants Sod2 and Cat improved the pathological condition of intervertebral disc tissues with increased GAG and COL2 expression, as well as reduced inflammation, thereby demonstrating a therapeutic effect in IVD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.118929DOI Listing

Publication Analysis

Top Keywords

hadsc ivd
16
intervertebral disc
12
sod2 catalase
8
pathological conditions
8
conditions intervertebral
8
disc degeneration
8
human adipose-derived
8
adipose-derived mesenchymal
8
mesenchymal stem
8
stem cells
8

Similar Publications

Background: Intervertebral disc degeneration (IVD) is a pain-inflicting disorder, posing a serious threat to the elderly, and new therapies are urgently needed. In this study, we examined the potential therapeutic effect of mesenchymal stem cells (MSCs) transplantation on IVD.

Methods: Both human adipose-derived stem cells (hADSCs) and human bone marrow mesenchymal stem cells (hBMSCs) provided by a volunteer were non-contact co-cultured with the human nucleus pulposus cells (hNPCs) to determine the efficacy of hNPCs-oriented differentiation.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IDD)-induced low back pain significantly influences the quality of life, placing a burden on public health systems worldwide. Currently available therapeutic strategies, such as conservative or operative treatment, cannot effectively restore intervertebral disc (IVD) function. Decellularized matrix (DCM) is a tissue-engineered biomaterial fabricated using physical, chemical, and enzymatic technologies to eliminate cells and antigens.

View Article and Find Full Text PDF

Sod2 and catalase improve pathological conditions of intervertebral disc degeneration by modifying human adipose-derived mesenchymal stem cells.

Life Sci

February 2021

Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China. Electronic address:

Objective: To investigate if the modification of human adipose-derived mesenchymal stem cells (hADSCs) by the antioxidants superoxide dismutase 2 (Sod2) and catalase (Cat) can attenuate the pathological conditions of intervertebral disc degeneration (IVD).

Methods: In vitro, MTT assay and qRT-PCR was used to detect cell proliferation and gene expressions in hADSCs transduced with Ad-null (an adenovirus vector containing no transgene expression cassette), Ad-Sod2 (recombinant adenovirus Sod2) and Ad-Cat. IVD mouse models were generated by needle puncture and treated with hADSCs with/without Ad-null/Ad-Sod2/Ad-Cat.

View Article and Find Full Text PDF

Nucleus pulposus (NP) is a resilient and hydrophilic tissue which plays a significant role in the biomechanical function of the intervertebral disc (IVD). Destruction of the NP extracellular matrix (ECM) is observed during the early stages of IVD degeneration. Herein, we describe the development and initial characterization of a novel biomaterial which attempts to recreate the resilient and hydrophilic nature of the NP via the construction of a chemically stabilized elastin-glycosaminoglycan-collagen (EGC) composite hydrogel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!