Background: Vestibular hair cell loss and its role in balance disorders are not yet completely understood due largely to the lack of precise hair cell damage protocols.
New Method: Our damage protocol aims to selectively remove type I hair cells in a way that produces consistent and predictable lesions that can be used for reliable inter-animal and inter-group comparison in balance research. This objective is achieved by transtympanic injection of gentamicin on both the round window membrane and oval window over a fixed time period followed by thorough washing.
Results: We achieved nearly total and consistent loss of type I hair cells at 94 % for the crista ampullaris of the lateral semicircular canal (LSC) and 86 % for the utricular macula with negligible loss of type II hair cells at 4% for the crista ampullaris of the LSC and 6% for the utricular macula. While the vestibular function was compromised in the relevant study group, this group had a zero mortality rate with no significant suppression of body weight gain.
Comparison With Existing Methods: Gentamicin is typically administered via intraperitoneal systemic injection or, more recently, transtympanic injection. The intraperitoneal method is simple, but mortality rate is high. The transtympanic injection method produces ototoxic damage but with inconsistent lesion size. This inconsistency prevents reliable comparisons among animals.
Conclusions: This protocol employs a transtympanic injection method which selectively targets type I hair cells for removal in the vestibular epithelia in a time-dependent manner, uniformly damages vestibular function, and causes uniform hair cell loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2020.109049 | DOI Listing |
Int J Mol Sci
December 2024
Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea.
While cisplatin is an effective anti-tumor treatment, it induces ototoxicity through mechanisms involving DNA damage, oxidative stress, and programmed cell death. Rho-associated coiled-coil-containing protein kinase (ROCK) is essential for numerous cellular processes, including apoptosis regulation. Studies have suggested that ROCK inhibitors could prevent apoptosis and promote regeneration.
View Article and Find Full Text PDFLife (Basel)
November 2024
MAC Gifu Research Institute, MicroAlgae Corporation, 4-15 Akebono-cho, Gifu 500-8148, Japan.
This study investigated the multifaceted benefits of water extract across various cell lines, including murine B16F1 melanoma cells, human keratinocyte HaCaT cells, and human follicle dermal papilla cells (HFDPCs), to assess its potential in skin health improvement. Initially, the antioxidant capacity of the extract was evaluated using the ABTS assay, revealing significant radical scavenging activity, indicating strong antioxidative properties. Subsequently, extract showed notable inhibition of α-MSH-enhanced melanin production in B16F1 cells without cell toxicity by suppressing tyrosinase expression.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China.
Introduction: Mesenchymal stem cells (MSCs) have been introduced as a promising treatment for diabetic wounds. The effects of stem cell therapy are thought to be caused by bioactive molecules secreted by stem cells. Stem cell-based gene therapies can target bioactive molecules.
View Article and Find Full Text PDFChildren (Basel)
November 2024
Faculty of Medical Sciences, State University of Campinas, Campinas 13083-887, SP, Brazil.
Unlabelled: COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. During and after COVID-19, audiovestibular symptoms and impairments have been reported.
Objectives: This study aimed to investigate the impacts of COVID-19 on the peripheral and central auditory systems of children and adolescents following the acute COVID-19 phase based on behavioral, electroacoustic, and electrophysiological audiological assessments.
Biomedicines
December 2024
Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy.
Background: Pimozide is a conventional antipsychotic drug of the diphenylbutylpiperidine class, widely used for treating schizophrenia and delusional disorders and for managing motor and phonic tics in Tourette's syndrome. Pimozide is known to block dopaminergic D2 receptors and various types of voltage-gated ion channels. Among its side effects, dizziness and imbalance are the most frequently observed, which may imply an effect of the drug on the vestibular sensory receptors, the hair cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!