Transplantation of human dental pulp stem cells compensates for striatal atrophy and modulates neuro-inflammation in 3-nitropropionic acid rat model of Huntington's disease.

Neurosci Res

Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Anatomy & Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia. Electronic address:

Published: September 2021

Stem cell-based therapy has recently offered a promising alternative for the remedy of neurodegenerative disorders like Huntington's disease (HD). Herein, we investigated the potential ameliorative effects of implantation of dental pulp stem cells (DPSCs) in 3-nitropropionic acid (3-NP) rat models of HD. In this regard, human DPSCs were isolated, culture-expanded and implanted in rats lesioned with 3-NP. Post-transplantation examinations revealed that DPSCs were able to survive and augment motor skills and muscle activity. Histological analysis showed DPSCs treatment hampered the shrinkage of the striatum along with the inhibition of gliosis and microgliosis in the striatum of 3-NP rat models. We also detected the downregulation of Caspase-3 and pro-inflammatory cytokines such as TNF and IL-1β upon DPSCs grafting. Overall, these findings imply that the grafting of DPSCs could repair motor-skill impairment and induce neurogenesis, probably through the secretion of neurotrophic factors and the modulation of neuroinflammatory response in HD animal models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2020.12.002DOI Listing

Publication Analysis

Top Keywords

dental pulp
8
pulp stem
8
stem cells
8
3-nitropropionic acid
8
huntington's disease
8
3-np rat
8
rat models
8
dpscs
6
transplantation human
4
human dental
4

Similar Publications

Background: Regenerative endodontics' primary objective is to establish a favorable environment in the root canal by removing infection, providing a sturdy scaffold, and sealing the apical end of the tooth tightly. These actions should promote pulp regeneration and root development.

Aim: This study evaluated histologically the regenerative potential of injectable hyaluronic acid (HA) hydrogel or collagen with blood clot as scaffolds during revascularization of immature necrotic dog's teeth.

View Article and Find Full Text PDF

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

This micro-computed tomography (micro-CT) analysis in vitro study was designed to compare void volume in root canal fillings performed using the single-cone (SC) technique and the continuous wave condensation (CWC) technique with bioceramic (BC) sealer. Forty human-extracted, single-rooted mandibular premolars were cleaned, shaped, and divided into two groups (n = 20) based on the obturation technique. In the first group, obturation was performed using the CWC technique with TotalFill HiFlow BC sealer.

View Article and Find Full Text PDF

Inducing phospholipase A2 and cyclooxygenase-2 expression and prostaglandins' production of human dental pulp cells by activation of NOD receptor and its downstream signaling.

Int J Biol Macromol

December 2024

School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Electronic address:

Dental caries with invasion and infection by microorganisms may induce pulpitis and intolerable pain. L-Ala-γ-D-Glu-mDAP (TriDAP) is a DAP-comprising muramyl tripeptide and a peptidoglycan degradation product found in gram-negative pulpal pathogens. TriDAP activates nucleotide-binding oligomerization domain1/2 (NOD1/NOD2) and induces tissue inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!