Regardless of advanced technology and innovation, infectious diseases continue to be one of the extreme health challenges in modern world. Tuberculosis (TB) is one of the top ten causes of deaths worldwide and the leading cause of death from a single infectious agent. The conventional TB drug therapy requires a long term treatment with frequent and multiple drug dosing with a stiff administration schedule, which results in low patient compliance. This eventually leads to the recurrence of the infection and the emergence of multiple drug resistance. Hence, there is an urgent need to develop more successful and effective strategies to overcome the problems of drug resistance, duration of treatment course and devotion to treatment. Nanotechnology has considerable potential for diagnosis, treatment and prevention of infectious diseases including TB. The main advantages of nanoparticles to be used as drug carriers are their small size, high stability, enhanced delivery of hydrophilic and hydrophobic drugs, intracellular delivery of macromolecules, targeted delivery of drugs to specific cells or tissues, and the feasibility of various drug administration routes. Moreover, these carriers are adapted to facilitate controlled, slow, and persistent drug release from the matrix. Above properties of nanoparticles permit the improvement of drug bioavailability and reduction of dosing frequency and may reduce the toxicity and resolve the problem of low adherence to the prescribed therapy. In this review, various types of nanocarriers have been evaluated as promising drug delivery systems for different administration routes and main research outcomes in this area have been discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2020.106127 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!