Background: Dysfunctional connectivity within the perceptual hierarchy is proposed to be an integral component of psychosis. The fragmented ambiguous object task was implemented to investigate neural connectivity during object recognition in patients with schizophrenia (SCZ) and bipolar disorder and first-degree relatives of patients with SCZ (SREL).
Methods: We analyzed 3T functional magnetic resonance imaging data collected from 27 patients with SCZ, 23 patients with bipolar disorder, 24 control subjects, and 19 SREL during the administration of the fragmented ambiguous object task. Fragmented ambiguous object task stimuli were line-segmented versions of objects and matched across a number of low-level features. Images were categorized as meaningful or meaningless based on ratings assigned by the participants.
Results: An a priori region of interest was defined in the primary visual cortex (V1). In addition, the lateral occipital complex/ventral visual areas, intraparietal sulcus (IPS), and middle frontal gyrus (MFG) were identified functionally via the contrast of cortical responses to stimuli judged as meaningful or meaningless. SCZ was associated with altered neural activations at V1, IPS, and MFG. Psychophysiological interaction analyses revealed negative connectivity between V1 and MFG in patient groups and altered modulation of connectivity between conditions from right IPS to left IPS and right IPS to left MFG in patients with SCZ and SREL.
Conclusions: Results provide evidence that SCZ is associated with inefficient processing of ambiguous visual objects at V1, which is likely attributable to altered feedback from higher-level visual areas. We also observed distinct patterns of aberrant connectivity among low-level, mid-level, and high-level visual areas in patients with SCZ, patients with bipolar disorder, and SREL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035333 | PMC |
http://dx.doi.org/10.1016/j.bpsc.2020.09.018 | DOI Listing |
eNeuro
January 2025
Research Group for Brain and Cognitive Science, Shahid Beheshti Medical University, Tehran, Iran.
Visual information emerging from the extrafoveal locations is important for visual search, saccadic eye movement control, and spatial attention allocation. Our everyday sensory experience with visual object categories varies across different parts of the visual field which may result in location-contingent variations in visual object recognition. We used a body, animal body, and chair two-forced choice object category recognition task to investigate this possibility.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
School of Artificial Intelligence, Tongmyong University, Busan 48520, Republic of Korea.
Depth estimation plays a pivotal role in advancing human-robot interactions, especially in indoor environments where accurate 3D scene reconstruction is essential for tasks like navigation and object handling. Monocular depth estimation, which relies on a single RGB camera, offers a more affordable solution compared to traditional methods that use stereo cameras or LiDAR. However, despite recent progress, many monocular approaches struggle with accurately defining depth boundaries, leading to less precise reconstructions.
View Article and Find Full Text PDFPsychon Bull Rev
December 2024
Queen Margaret University, Edinburgh, Scotland, EH21 6UU, UK.
Learning and remembering what things are used for is a capacity that is central to successfully living in any human culture. The current paper investigates whether functional facts (information about what an object is used for) are remembered more efficiently compared with nonfunctional facts. Experiment 1 presented participants with images of functionally ambiguous objects associated with a (made-up) name and a (made-up) fact that could relate either to the object's function or to something nonfunctional.
View Article and Find Full Text PDFJ Med Imaging Radiat Oncol
November 2024
Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.
Visual perceptual artefacts are distortions or illusions in medical image interpretation arising from the human visual system rather than hardware or imaging acquisition processes. These artefacts, emerging at various visual processing stages, such as the retina, visual pathways, visual cortex, and cognitive interpretation stages, impact the interpretation of cardiothoracic images. This review discusses artefacts including Mach bands, Dark Rim, Background Effects, Ambiguous Figures, Subjective Contours, and the Parallax Effect.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Statistics and Mathematics, Guangdong University of Finance & Economics, Guangzhou 510320, China.
Underwater object detection (UOD) presents substantial challenges due to the complex visual conditions and the physical properties of light in underwater environments. Small aquatic creatures often congregate in large groups, further complicating the task. To address these challenges, we develop Aqua-DETR, a tailored end-to-end framework for UOD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!