A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cellular S-denitrosylases: Potential role and interplay of Thioredoxin, TRP14, and Glutaredoxin systems in thiol-dependent protein denitrosylation. | LitMetric

Cellular S-denitrosylases: Potential role and interplay of Thioredoxin, TRP14, and Glutaredoxin systems in thiol-dependent protein denitrosylation.

Int J Biochem Cell Biol

Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal 700135, India. Electronic address:

Published: February 2021

Nitric Oxide is a very well known gaseous second messenger molecule and vasorelaxant agent involved in a variety of signaling in the body such as neurotransmission, ion channel modulation, and inflammation modulation. However, it's reversible covalent attachment to thiol groups of cysteine residues under nitrosative stress leading to aberrant protein S-nitrosylation (PSNO) has been reported in several pathological conditions in the body stemming from neurodegenerative diseases, cancer, cardiovascular system, and immune system disorders. In the cell, PSNOs are partly unstable and transit to a more stable disulfide state serving as an intermediate step towards disulfide formation thus eliciting the biological response. Scientists have identified several cellular thiol-dependent disulfide reductases that have the intrinsic capability to reverse the modification by reducing the stable disulfides formed in PSNOs and thereby rescue S-nitrosylation-induced altered proteins. The physiological roles of these major cellular ubiquitous S-denitrosylases and their probable implementations have not been fully explored. Gaining knowledge from current research and development this review provides a deeper insight into understanding the interplay and role of the major ubiquitous S-denitrosylases in maintaining cellular redox homeostasis. This review umbrellas the mechanism of Thioredoxin, TRP14, and Glutaredoxin systems and highlights their substrates specificities at different cellular conditions, physiological roles, and importance in diseased conditions that would allow researchers to investigate effective therapeutic interventions for nitrosative stress-related diseases and disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2020.105904DOI Listing

Publication Analysis

Top Keywords

thioredoxin trp14
8
trp14 glutaredoxin
8
glutaredoxin systems
8
physiological roles
8
ubiquitous s-denitrosylases
8
cellular
5
cellular s-denitrosylases
4
s-denitrosylases potential
4
potential role
4
role interplay
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!