Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The increasing use of sustainable manufacturing technologies in the industry presents a constant challenge for the development of suitable biocatalysts. Traditionally, improved biocatalysts are developed either using protein engineering (PE) or enzyme immobilization (EI). However, these approaches are usually not simultaneously applied. In this work, we designed and validated an enzyme improvement platform, Immobilized Biocatalyst Engineering (IBE), which simultaneously integrates PE and EI, with a unique combination of improvement through amino acid substitutions and attachment to a support material, allowing to select variants that would not be found through single or subsequent PE and EI improvement strategies. Our results show that there is a significant difference on the best performing variants identified through IBE, when compared to those that could be identified as soluble enzymes and then immobilized, especially when evaluating variants with low enzyme as soluble enzymes and high activity when immobilized. IBE allows evaluating thousands of variants in a short time through an integrated screening, and selection can be made with more information, resulting in the detection of highly stable and active heterogeneous biocatalysts. This novel approach can translate into a higher probability of finding suitable biocatalysts for highly demanding processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.12.097 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!