Aims: We systematically characterized metastatic murine B16-F10 melanoma, a sub-line derived from murine melanoma B16-F1 cells.
Materials And Methods: RNA-sequencing and network analyses (Ingenuity Pathway Analysis) were performed to identify novel potential metastasis mechanisms. Chromosomal aberrations were identified by multicolor fluorescence in situ hybridization (mFISH) using all 21 murine whole chromosome painting probes.
Key Findings: Numerous genes were overexpressed in B16-F10 cells, some of which have been already described as being metastasis-linked. Nr5a1/sf1, a known prognostic marker for adrenal tumors, was 177-fold upregulated in B16-F10 cells compared to B16-F1 cells. Hoxb8 was 75-fold upregulated, which was previously associated with gastric cancer progression and metastasis. Ptk7, which is linked with tumorigenesis and metastasis of esophageal squamous carcinoma, was 67-fold upregulated. B16-F10 cells acquired additional chromosomal aberrations compared to B16-F1 cells, including dic(4)(pter->qter:qter->pter), +dic(6;15), +der(10)t(10;?1;16).
Significance: In addition to well-known metastatic genes, numerous novel genes and genomic aberrations were identified, which may serve as targets for treatment in the future. Transcriptomic and genetic analyses in B16-F10 cells unraveled a range of novel metastasis mechanisms, which may also have important implications for future treatment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2020.118922 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Life Sciences, Henan University, Kaifeng, Henan 475001, China.
Melanoma, a highly aggressive skin cancer, poses significant challenges due to its rapid metastases and high mortality rates. While metformin (Met), a first-line medication for type 2 diabetes, has shown promise in inhibiting tumor growth and metastases, its clinical efficacy in cancer therapy is limited by low bioavailability, short half-life, and gastrointestinal adverse reactions associated with oral administration. In this study, we developed a hollow mesoporous polydopamine nanocomposite (HMPDA-PEG@Met@AB) coloaded with Met and ammonia borane (AB), designed to enable a combined gas-assisted, photothermal, and chemotherapeutic approach for melanoma treatment.
View Article and Find Full Text PDFScand J Immunol
February 2025
Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature myeloid cells playing a critical role in immune suppression. In vitro-generated MDSCs are a convenient tool to study the properties of tumour-associated MDSCs. Here, we compared six protocols for in vitro generation of functional mouse MDSCs from bone marrow progenitors.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland.
: The stimulator of interferon genes (STING) is currently accepted as a relevant target for anti-cancer therapies. Besides encouraging results showing STING agonist-induced tumor growth inhibition, in some types of tumors the effect is less prominent. We hypothesized that higher STING levels in cancer cells and the possibility of its activation determine a greater anti-cancer response.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
Energy delivered at different wavelengths causes different types of damage to DNA. PC-3, FaDu, 4T1 and B16-F10 cells were irradiated with different wavelengths of ultraviolet light (UVA/UVC) and ionizing radiation (X-ray). Furthermore, different photosensitizers (ortho-iodo-Hoechst33258/psoralen/trioxsalen) were tested for their amplifying effect.
View Article and Find Full Text PDFBioinorg Chem Appl
January 2025
Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Application Théranostiques (LBVAT), University of Tunis El Manar, Tunis 1002, Tunisia.
The efficacy of available treatments for melanoma is limited by side effects and the rapidly emerging resistance to treatment. In this context, the decavanadate compounds represent promising tools to design efficient therapeutic agents. In our study, we synthesized a dimagnesium disodium decavanadate icosahydrate compound (MgNaVO·20HO) and investigated its structure stability as well as its antimelanoma effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!