A new approach to the quantitative analysis of parabens (PBs) in cosmetics, based on microextraction by packed sorbent (MEPS) followed by HPLC-UV detection is proposed. The development of optimal conditions for the sample preparation step was carried out in two stages. The potentially important factors that could influence the extraction were screened using the Plackett-Burman design approach, as a result of which, three statistically significant factors were selected from the nine studied. Thereafter, the selected variables were optimized by response surface methodology using a Central Composite Design. Under optimal conditions, the linear ranges for PBs analysis in cosmetic samples were 0.05-4 μg/mL with excellent precision. Limits of detection (LOD) of PBs in cosmetic samples were 2-5 ng/mL, and the extraction recovery ranged from 89 to 105 %. By comparing the chromatograms of the diluted shampoo sample before and after MEPS, the benefits of developed approach were shown. Then it was applied to the analysis of PBs in commercial hair cosmetic products: parabens were determined in all samples in which they were indicated on the package and in 1 of 12 samples labeled "paraben-free". Finally, the proposed method was compared with other analytical HPLC-UV methods with various sample pretreatment techniques for PBs analysis in cosmetics described in recent articles. Its sensitivity turned out to be one of the highest, while it is express, automated, meets the principles of green chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2020.113843DOI Listing

Publication Analysis

Top Keywords

microextraction packed
8
packed sorbent
8
optimal conditions
8
pbs analysis
8
cosmetic samples
8
pbs
5
sorbent optimized
4
optimized statistical
4
statistical design
4
design experiment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!