3,4-dihydroxyphenylacetaldehyde (DOPAL), a toxic intermediary metabolite of dopamine (DA), causes catecholaminergic neurodegeneration via covalent binding with functional proteins or other biomolecules. Accurate quantification of DOPAL is essential to investigate the etiological factors associated with DOPAL and the pathogenetic role of DOPAL in Parkinson's disease (PD). However, no validated quantitative methods are available. Quantification of DOPAL in biosample is challenging since it is a reactive endogenous aldehyde with poor ionization efficiency and chromatographic behavior in the LC-MS system. Here, a sensitive, simple, and robust UPLC-MS/MS method has been established and validated for the determination of DOPAL in rat brain tissue specimens. DOPAL was found to be unstable in biosample due to reactive aldehyde whereas it was stable in acidic condition. The analyte was stabilized by pH and temperature control during the sample preparation and derivatization. Then, a chemical derivatization method that can be readily performed in acidic conditions and at low temperature was employed using 2-hydrazino-4-(trifluoromethyl)-pyrimidine (HTP) to block the reactive aldehyde and improve the detection sensitivity (about 100-fold increase) and chromatographic retention. Bovine serum albumin was used as a surrogate matrix, which was validated by the parallelism assay and post-column infusion experiment. This method was fully validated and the lower limit of quantification (LLOQ) was 0.5 ng/mL. With the method, a significant increase of DOPAL level was found in striatum region of rats received 6-hydroxydopamine (6-OHDA) injection for 12 h, indicating DOPAL may play a pathogenic role in 6-OHDA-induced PD model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2020.113822 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!