Novel route has been developed to selectively extract lithium (Li), cobalt (Co) and manganese (Mn) from the leach liquor of discarded lithium ion batteries (LIBs) containing 1.4 g/L Cu, 1.1 g/L Ni, 11.9 g/L Co, 6.9 g/L Mn and 1.2 g/L Li. Initially, Cu and Ni were extracted by solvent extraction techniques using 10% LIX 84-IC at equilibrium (Eq.) pH 3 and 4.6, respectively. Subsequently, precipitation studies were carried out at different conditions such as pH, reaction time, precipitant concentration etc., to optimize the parameters for selective precipitation of Co from the leach liquor. Result showed that 99.2% Co was precipitated from the leach liquor (11.9 g/L Co, 6.9 g/L Mn and 1.2 g/L Li) after extraction of Cu and Ni in a range of pH 2.9 to 3.1 using un-diluted ammonium sulfide solution (10% v/v) as a precipitant at 30 °C, while only 0.89% Mn and 0.62% Li were co-precipitated. After Co precipitation, 98.9% Mn was extracted from the filtrate using 10% D2EHPA at equilibrium pH 4.5, and Li remained in raffinate. From the obtained purified solution, metals could be recovered either in a form of salt/metals by precipitation/ evaporation/ electrolysis method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2020.10.002DOI Listing

Publication Analysis

Top Keywords

leach liquor
16
liquor discarded
8
discarded lithium
8
lithium ion
8
ion batteries
8
batteries libs
8
119 g/l 69 g/l
8
69 g/l 12 g/l
8
selective extraction
4
extraction separation
4

Similar Publications

This study describes the use of the emulsion liquid membrane (ELM) technique to recover thorium (Th(IV)) from an aqueous nitrate solution. The components of the ELM were kerosene as a diluent, sorbitan monooleate (span 80) as a surfactant, bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) as an extractant, and HSO solution as a stripping reagent. Th(IV) was more successfully extracted and separated under the following favorable conditions: Cyanex272 concentration of 0.

View Article and Find Full Text PDF

Effects of leachate from disposable plastic takeout containers on the cardiovascular system after thermal contact.

Ecotoxicol Environ Saf

December 2024

Department of Epidemiology and Health Statistics, School of public health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China. Electronic address:

The study investigated the cardiovascular effects of daily exposure to plastic products by simulating the oral heat exposure mode of disposable plastic takeout containers (DPTC) commonly used in society. Questionnaires were used to randomly choose 3179 people in order to examine any possible correlation between the frequency of plastic exposure and the risk of cardiovascular diseases (CVD). Additionally, Sprague-Dawley(SD) rats consumed leachate from DPTC exposed to boiling water for 1 minute,5 minutes and 15 minutes respectively, over three months.

View Article and Find Full Text PDF

The development of novel efficient extractants for Pd recovery from high acidic chloride media leaching solutions has always been an important task. In this study, a novel pincer extractant ,'-dibutyl--phenyldithioamide (DBTB-4) was successfully synthesized, and its structure was confirmed by FT-IR, H NMR, C NMR (DEPT 135), ESI-HRMS and EA. The possibility of Pd recovery from leaching liquors of waste auto-catalysts by DBTB-4 was evaluated.

View Article and Find Full Text PDF

Solvent extraction of selenium(IV) ions from highly concentrated hydrochloric acid using 0.4 mol/L Aliquat 336 dissolved in kerosene was investigated. As a modifying agent, 1-octanol (10% v/v) was added to the organic phase to avoid the third phase formation.

View Article and Find Full Text PDF

Developing sustainable, efficient, and selective gold recovery technology is essential to implement the valorization of complementary alternative sources for this precious metal, such as spent e-waste, and to preserve the environment. The main challenge in recovering gold from liquors obtained from leached waste electronics is the low concentration of this precious metal compared to impurities. Here, we report the preparation of a novel multivariate biological metal-organic framework (MTV-BioMOF) as a potential material for the selective recovery of gold metal ions from water, even in the presence of other interfering metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!