A systematic review of multifocal and multicentric glioblastoma.

J Clin Neurosci

Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China. Electronic address:

Published: January 2021

Multiple glioblastoma multiforme (GBM) is classified as multifocal and multicentric GBM according to whether there is communication between the lesions. Multiple GBM is more genetically heterogeneous, aggressive and resistant to chemoradiotherapy than unifocal GBM, and has a worse prognosis. There is no international consensus on the treatment of multiple GBM. This review discusses some paradigms of multiple GBM and focuses on the heterogeneity spread pathway, imaging diagnosis, pathology, molecular characterization and prognosis of multifocal and multicentric GBM. Several promising therapeutic methods of multiple GBM are also recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jocn.2020.11.025DOI Listing

Publication Analysis

Top Keywords

multiple gbm
16
multifocal multicentric
12
gbm
8
multicentric gbm
8
multiple
5
systematic review
4
review multifocal
4
multicentric glioblastoma
4
glioblastoma multiple
4
multiple glioblastoma
4

Similar Publications

Revisiting ABC Transporters and Their Clinical Significance in Glioblastoma.

Pharmaceuticals (Basel)

January 2025

Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.

: The multiple drug-resistant phenomenon has long since plagued the effectiveness of various chemotherapies used in the treatment of patients with glioblastoma (GBM), which is still incurable to this day. ATP-binding cassette (ABC) transporters function as drug transporters and have been touted to be the main culprits in developing resistance to xenobiotic drugs in GBM. : This review systematically analyzed the efficacy of ABC transporters against various anticancer drugs from 16 studies identified from five databases (PubMed, Medline, Embase, Scopus, and ScienceDirect).

View Article and Find Full Text PDF

Background: Bloodstream infection (BSI) is a systemic infection that predisposes individuals to sepsis and multiple organ dysfunction syndrome. Early identification of infectious agents and determination of drug-resistant phenotypes can help patients with BSI receive timely, effective, and targeted treatment and improve their survival. This study was based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), Decision Tree (DT), Random Forest (RF), Gradient Boosting Machine (GBM), eXtreme Gradient Boosting (XGBoost), and Extremely Randomized Trees (ERT) models were constructed to classify carbapenem-resistant Escherichia coli (CREC) and carbapenem-resistant Klebsiella pneumoniae (CRKP).

View Article and Find Full Text PDF

Background: Recent years have seen persistently poor prognoses for glioma patients. Therefore, exploring the molecular subtyping of gliomas, identifying novel prognostic biomarkers, and understanding the characteristics of their immune microenvironments are crucial for improving treatment strategies and patient outcomes.

Methods: We integrated glioma datasets from multiple sources, employing Non-negative Matrix Factorization (NMF) to cluster samples and filter for differentially expressed metabolic genes.

View Article and Find Full Text PDF

Background: Despite numerous operative and non-operative treatment modalities, patients with glioblastoma (GBM) have a dismal prognosis. Identifying predictors of survival and recurrence is an essential strategy for guiding treatment decisions, and existing literature demonstrates associations between hematologic data and clinical outcomes in cancer patients. As such, we provide a novel analysis that examines associations between preoperative hematologic data and postoperative outcomes following GBM resection.

View Article and Find Full Text PDF

The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!