DA-9801, a plant-based drug used for the treatment of diabetic neuropathy, is known to improve angiotensin II (Ang II)-induced vascular endothelial cell dysfunction. However, the underlying mechanism is not fully understood. We aimed to determine whether the protective effect of DA-9801 against Ang II-induced endothelial cell dysfunction was mediated via inhibition of endothelial cell inflammation and apoptosis. Ang II-induced oxidative stress was attenuated by pretreatment of human dermal microvascular endothelial cells (HDMECs) with DA-9801. This prevented the Ang II-induced upregulation of NAD(P)H oxidase (the NOX4 and p22phox subunits) and reactive oxygen species. Further, pretreatment of HDMECs with DA-9801 ameliorated Ang II-mediated nuclear factor kappa B activity via prevention of the upregulation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase. It also decreased the Ang II-stimulated increase in inducible nitric oxide synthase (NOS) and decreased endothelial NOS protein expression. DA-9801 decreased Ang II-induced upregulation of intercellular adhesion molecule 1, vascular adhesion molecule, and E-selectin in HDMECs. Moreover, TUNEL and annexin V-FITC fluorescence staining for apoptosis and the activities of caspases 9, 7, and 3 decreased in HDMECs pretreated with DA-9801, indicating that the drug enhanced anti-apoptotic pathways. Thus, DA-9801 modulated Ang II-induced endothelial cell dysfunction via inflammatory and apoptotic pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphs.2020.10.008 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. Electronic address:
Objective: This study was performed to compare the incidence of Angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) between intravenous and intraperitoneal injection of AAV8.mPCSK9 in wild-type (WT) mice with C57BL/6J background and the pathological differences of above model in WT and ApoE mice.
Design: Male WT mice were injected intraperitoneally or intravenously with either a AAV8.
Life Sci
December 2024
Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China. Electronic address:
Aims: Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Background: The role of 1,25-dihydroxyvitamin-D3 (VitD) and sirtuin-1 (SIRT1) in mitigating pathological cardiac remodeling is well recognized. However, the potential for SIRT1 to mediate the inhibitory effects of VitD on angiotensin II (Ang II) -induced hypertrophy in H9c2 cardiomyoblasts remains unclear.
Methods: H9c2 cardiomyoblasts were exposed to Ang II or a combination of VitD and Ang II, both in the absence and presence of SIRT1-specific siRNA.
ACS Appl Bio Mater
December 2024
Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
Abdominal aortic aneurysm (AAA) is a cardiovascular disease with potentially fatal consequences, yet effective therapies to prevent its progression remain unavailable. Oxidative stress is associated with AAA development. Carbon dots have reactive oxygen species-scavenging activity, while green tea extract exhibits robust antioxidant properties.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.
Methods And Results: In this study, we employed a discovery-driven, unbiased approach.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!