Cerebral ischemia/reperfusion injury activates microglia, resident immune cells in the brain, and allows the infiltration of circulating immune cells into the ischemic lesions. Microglia play both exacerbating and protective roles in pathological processes and are thus often referred to as "double-edged swords." In ischemic brains, blood-borne macrophages play a role that is distinct from that of resident activated microglia. Recently, the metabolic alteration of immune cells in the pathogenesis of inflammatory disorders including cerebral infarction has become a critical target for investigation. We begin this review by describing the multifaceted functions of microglia in cerebral infarction. Next, we focus on the metabolic alterations that occur in microglia during pathological processes. We also discuss morphological changes that take place in the mitochondria, leading to functional disturbances, accompanied by alterations in microglial function. Moreover, we describe the involvement of the reactive oxygen species that are produced during aberrant metabolic activity. Finally, we discuss therapeutic strategies to ameliorate aggravative changes in metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphs.2020.11.007 | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.
Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.
Transl Stroke Res
January 2025
Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
Ischemic stroke is a worldwide disease with high mortality and morbidity. Kv7/KCNQ channels are key modulators of neuronal excitability and microglia function, and activation of Kv7/KCNQ channels has emerged as a potential therapeutic avenue for ischemic stroke. In the present study, we focused on a new Kv7/KCNQ channel opener QO-83 on the stroke outcomes and its therapeutic potential.
View Article and Find Full Text PDFNMC Case Rep J
December 2024
Department of Neurology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan.
We report a case of persistent consciousness disturbance due to non-convulsive status epilepticus (NCSE) following a successful mechanical thrombectomy (MT). A 98-year-old female with atrial fibrillation presented with impaired consciousness and right hemiparesis 6 hrs after her last known well state. Magnetic resonance angiography revealed occlusion of the left internal carotid artery, necessitating MT to achieve complete recanalisation.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Department of Anesthesiology and Reanimation, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye.
Aim: This study aimed to protect brain functions in patients who experienced in-hospital cardiac arrest through the application of local cerebral hypothermia. By utilizing a specialized thermal hypothermia device, this approach sought to mitigate ischemic brain injury associated with post-cardiac arrest syndrome, enhance survival rates, and improve neurological outcomes as measured by standardized scales.
Methods: A prospective, single-center cohort study was conducted involving patients aged ≥18 years who experienced in-hospital cardiac arrest and achieved return of spontaneous circulation (ROSC).
PLoS One
January 2025
Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China.
Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!