The melon aphid, Aphis gossypii is a globally distributed crop pest with a wide host range. The intensive use of insecticides against this insect over several years has led to develop resistance against many insecticides including acetamiprid. Understanding the relationship between acetamiprid resistance and fitness of A. gossypii is essential to limit the spread of the resistant population in the field. In this study, age-stage, two-sex life table approach was used to investigate these relationships in the lab. Results showed that resistant strain (Ace-R) had a reduced fitness (relative fitness = 0.909) along with significantly decreased adult longevity, fecundity, net reproductive (R), mean generation time (T) and gross reproductive rate (GRR). Compared to the susceptible strain (Ace-S), the pre-adult period and total pre-oviposition period (TPOP) were also significantly shorter in Ace-R strain. Moreover, the expression profiles of EcR, JHBP, JHAMT, JHEH, USP and Vg genes supposed to be involved in insect reproduction and development were analyzed using Quantitative Real Time PCR. The EcR, JHBP, JHAMT and USP genes were up-regulated, Vg gene was down-regulated while the mRNA level of JHEH gene was statistically same in the Ace-R strain compared to the Ace-S strain. Collectively, this study provides the occurrence and magnitude of fitness costs of A. gossypii against acetamiprid resistance and could be helpful to manage the resistance evolution in field populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2020.104729 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
is a highly polyphagous pest that causes substantial agricultural damage. Temperature and insecticides are two major abiotic stresses affecting their population abundance. Heat shock proteins play an essential role in cell protection when insects are exposed to environmental stresses.
View Article and Find Full Text PDFInsects
November 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The increasing resistance in field populations to sulfoxaflor and many different types of insecticides represents a significant challenge in protecting cotton production in China. Although resistant pests were able to regain their susceptibility to insecticides after the reduction in insecticide applications, some of their biological parameters remained different from susceptible strains. The resistance to sulfoxaflor was unstable in after the loss of selective pressure.
View Article and Find Full Text PDFTrop Med Infect Dis
December 2024
Agroecohealth Unit, International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, Cotonou P.O. Box 0932, Benin.
Agricultural pesticides may play a crucial role in the selection of resistance in field populations of mosquito vectors. This study aimed to determine the susceptibility level of s.l.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Department of Applied Chemistry and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; Center for Diversity and Inclusion, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan. Electronic address:
Concerns have been raised regarding acetamiprid (ACE), a neonicotinoid insecticide, due to its potential neurodevelopmental toxicity. ACE, which is structurally similar to nicotine, acts as an agonist of nicotinic acetylcholine receptors (nAChRs) and resists degradation by acetylcholinesterase. Furthermore, ACE has been reported to disrupt neuronal transmission and induce developmental neurotoxicity and ataxia in animal models.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA. Electronic address:
New insecticides prequalified for malaria control interventions include modulators of nicotinic acetylcholine receptors that act selectively on different subunits leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergist test with piperonyl butoxide revealed that the sister taxa, Anopheles gambiae and An.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!