Laryngeal cancer (LCa) is a prevalent malignant head and neck cancer with relatively unclear pathogenesis. A prior study has suggested that miR-183 differentially expressed in laryngeal-related malignancies, but its accurate role has not been fully ascertained in LCa. miR-183 expression in LCa tissues and cells was detected assisted by TCGA/GEO databases or qRT-PCR assay, relatively. Target genes of miR-183 were predicted accessing to TargetScan website. Luciferase activity analysis was conducted to determine the relationship between miR-183 and its possible target. CCK-8, colony formation and transwell invasion and migration experiments were implemented to measure LCa cell viability, invasion and migration. Western blot assay was utilized to evaluate cell adhesion and EMT-related proteins expressions. The expression of miR-183 was expressed in LCa tissue samples and cells at higher levels than normal controls. Upregulation of miR-183 facilitated Hep-2 and TU212 cells viability, while miR-183 reduction inhibited the proliferative potential of Hep-2 and TU212 cells. TMSB4Y was determined as a possible target of miR-183, and its expression was decreased in LCa. LCa patients with low TMSB4Y expression had poorer outcomes relative to that with high TMSB4Y expression. TMSB4Y overturned the promoting impacts of miR-183 on the LCa cellular malignant behaviors, including cell proliferation, colonogenicity, invasion and migration. miR-183 overexpression inhibited cell adhesion through inhibiting TMSB4Y expression. Overall, all results elucidated that miR-183, as an oncogenic molecule in LCa, may be used to predict the prognosis of LCa patients by targeting TMSB4Y.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10799893.2020.1863987 | DOI Listing |
Adv Sci (Weinh)
January 2025
LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane.
View Article and Find Full Text PDFInt Angiol
December 2024
Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -
The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.
View Article and Find Full Text PDFIn Vitro Model
June 2024
Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA.
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, and the most common form is coronary artery disease (CAD). Treatment options include coronary artery bypass surgery (CABG) or percutaneous heart intervention (PCI), but both have drawbacks. Bare metal stents (BMS) are commonly used to treat CAD; however, they lead to restenosis.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France.
Background: Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells.
View Article and Find Full Text PDFJ Ginseng Res
January 2025
Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
Background: The non-saponin (NS) fraction is an important active component of with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated.
Purpose: and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!