Hepatocellular carcinoma (HCC) is a major cause of concern as it has substantial morbidity associated with it. Previous reports have ascertained the antiproliferative activity of imatinib mesylate (IMS) against diverse types of carcinomas, but limited bioavailability has also been reported. The present study envisaged optimized IMS-loaded lactoferrin (LF)-modified PEGylated liquid crystalline nanoparticles (IMS-LF-LCNPs) for effective therapy of IMS to HCC via asialoglycoprotein receptor (ASGPR) targeting. Results displayed that IMS-LF-LCNPs presented an optimum particle size of 120.40 ± 2.75 nm, a zeta potential of +12.5 ± 0.23 mV, and 73.94 ± 2.69% release. High-resolution transmission electron microscopy and atomic force microscopy were used to confirm the surface architecture of IMS-LF-LCNPs. The results of cytotoxicity and 4,6-diamidino-2-phenylindole revealed that IMS-LF-LCNPs had the highest growth inhibition and significant apoptotic effects. Pharmacokinetics and biodistribution studies showed that IMS-LF-LCNPs have superior pharmacokinetic performance and targeted delivery compared to IMS-LCNPs and plain IMS, which was attributed to the targeting action of LF that targets the ASGPR in hepatic cells. Next, our in vivo experiment established that the HCC environment existed due to suppression of BAX, cyt , BAD, e-NOS, and caspase (3 and 9) genes, which thus owed upstream expression of Bcl-xl, iNOS, and Bcl-2 genes. The excellent therapeutic potential of IMS-LF-LCNPs began the significant stimulation of caspase-mediated apoptotic signals accountable for its anti-HCC prospect. H nuclear magnetic resonance (serum) metabolomics revealed that IMS-LF-LCNPs are capable of regulating the disturbed levels of metabolites linked to HCC triggered through -nitrosodiethylamine. Therefore, IMS-LF-LCNPs are a potentially effective formulation against HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.0c01024 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Department of Biotechnology, BIODIATECH-Proplanta Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania.
: Pentacyclic triterpenoids are increasingly studied as anticancer agents with many advantages compared to synthetic chemotherapeutics. The aim of this study was to prepare liposomal and nanostructured lipid formulations including a standardized extract of silver birch () outer bark (TTs) and to evaluate their potential as anticancer agents in vitro, using Melanoma B16-F10 and Walker carcinoma cells. : Appropriate solvents were selected for efficient TTs extraction, and original recipes were used to obtain Pegylated liposomes and nanolipid complexes with entrapped TTs, comparative to pure standards (betulinic acid and doxorubicin) in similar conditions.
View Article and Find Full Text PDFJ Pharm Biomed Anal
December 2024
Tanvex Biopharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA. Electronic address:
Pegfilgrastim, a 40 kDa PEGylated form of recombinant human granulocyte colony-stimulating factor (rhG-CSF), is a biotherapeutic protein used to treat chemotherapy-induced neutropenia. To ensure the product is safe and effective, stringent monitoring of product-related impurities, particularly those arising from oxidative degradation, is necessary. This study focuses on the isolation and characterization of oxidized variants in pegfilgrastim using a multi-step approach that includes method transfer to semi-preparative High-Performance Liquid Chromatography (HPLC), mass spectrometry, and an in vitro cell-based potency assay (CBPA).
View Article and Find Full Text PDFSmall
November 2024
School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China.
Hepatocellular carcinoma (HCC) is a major cause of cancer deaths globally. Unlike traditional molecularly targeted drugs, magnetically controlled drug delivery to micro/nanorobots enhances precision in targeting tumors, improving drug efficiency and minimizing side effects. This study develops a dual-responsive, magnetically controlled drug delivery system using PEGylated paramagnetic nanoparticles conjugated with decoy receptor 3 (DCR3) antibodies.
View Article and Find Full Text PDFNat Commun
November 2024
School of Engineering and Materials Science, Queen Mary University of London, London, UK.
PEGylation (the covalent attachment of one or more poly(ethylene glycol) (PEG) units to a therapeutic) is a well-established technique in the pharmaceutical industry to increase blood-residence time and decrease immunogenicity. A challenging aspect of PEGylation is the dispersity of PEGylation agents, which results in batch-to-batch variations and analytical limitations. Herein, we present an approach to overcome these limitations by manufacturing a defined molecular weight (dispersity-free) PEGylation agent.
View Article and Find Full Text PDFInt J Nanomedicine
October 2024
Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
Polyethylene glycol (PEG)-modified nanoparticles (NPs) often struggle with reduced effectiveness against metastasis and liquid tumors due to limited tumor cell uptake and therapeutic efficacy. To address this, actively targeted liposomes with enhanced tumor selectivity and internalization are being developed to improve uptake and treatment outcomes. Using bi-functional proteins to functionalize PEGylated NPs and enhance targeted drug delivery through non-covalent attachment methods has emerged as a promising approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!