This paper reports on the hydrothermal synthesis of a novel 2D material, magnesium silicate hydroxide/carbon (MSH/C) core-shell nanoplate, in a graphite-MgO-SiO-NaOH system at 300 °C and 12 MPa for 48 h. Its significant potentials as an antiwear additive in lubricant oil were subsequently demonstrated. The 2D nanoplates consist of an MSH core and a 1-6 nm thick sp-hybridized carbon shell with a layer spacing of 0.34 nm. In typical four-ball tests at a maximum Hertzian pressure of 3.4 GPa, the MSH/C core-shell nanoplates nearly eliminated wear, whether suspended in poly alpha-olefin oil or fully formulated lubricating oil, and the corresponding volume wear rates were reduced by 96.33% and 72%, respectively. The excellent antiwear performance was ascribed to the formation of a tribofilm consisting of diffusedly distributed FeO nanocrystals and carbon- and/or SiO-containing amorphous structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c02845DOI Listing

Publication Analysis

Top Keywords

lubricant oil
8
magnesium silicate
8
silicate hydroxide/carbon
8
core-shell nanoplates
8
msh/c core-shell
8
superlow wear
4
wear realizable
4
realizable tribofilms
4
tribofilms lubricant
4
oil
4

Similar Publications

In recent years, liquid-solid triboelectric nanogenerators (L-S TENGs) have been rapidly developed in the field of liquid energy harvesting and self-powered sensing. This is due to a number of advantages inherent in the technology, including the low cost of fabricated materials, structural diversity, high charge-energy conversion efficiency, environmental friendliness, and a wide range of applications. As liquid phase dielectric materials typically used in L-S TENG, a variety of organic and inorganic single-phase liquids, including distilled water, acidic solutions, sodium chloride solutions, acetone, dimethyl sulfoxide, and acetonitrile, as well as paraffinic oils, have been used in experiments.

View Article and Find Full Text PDF

Surfactant-free W/O high internal phase emulsions co-stabilized by beeswax and phytosterol crystal scaffold: A promising fat mimetic with enhanced mechanical and mouthfeel properties.

Food Res Int

February 2025

School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan 523808, China.

Water-in-oil high internal phase emulsions (W/O-HIPEs) typically rely on large amounts of surfactants to disperse water droplets and usually use crystalline saturated triacylglycerides (TAGs) to enhance processing properties. However, these practices conflict with consumer demands for 'natural' ingredients. This study seeks to develop novel crystal fractions similar to saturated TAGs for the preparation of W/O-HIPEs as low-calorie fat mimetics, focusing on their mechanical and mouthfeel properties, which have received little attention thus far.

View Article and Find Full Text PDF

Performance and emissions of diesel engine combustion lubricated with Jatropha bio-lubricant and MWCNT additive.

Sci Rep

January 2025

Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

Vegetable oil-based lubricants, modified through transesterification and epoxidation, present a sustainable alternative to mineral lubricants for transport and industrial use. This study evaluates epoxidized jatropha oil (EJA) enhanced with multi-walled carbon nanotubes (MWCNT) as a bio-lubricant for compression ignition engines. MWCNT, dispersed in EJA using an ultrasonic probe sonicator with Triton X-100 as a surfactant, was tested at nanoparticle concentrations from 0.

View Article and Find Full Text PDF

Introducing PES porous membrane to establish bionic autocrine channels: A lubricating, anti-wear antifouling coating.

Mar Pollut Bull

January 2025

Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, PR China; Dalian Key Laboratory of Internal Combustion Engine Tribology and Reliability Engineering, Dalian 116026, PR China. Electronic address:

As a global challenge, marine biofouling is causing serious economic losses and adverse ecological impacts. In recent years, a variety of promising and environmentally friendly anti-fouling strategies have emerged, among which the excellent anti-fouling performance of bionic autocrine coatings has been recognized. However, bionic autocrine coatings still suffer from uncontrollable secretion behavior, poor mechanical stability, and poor abrasion resistance.

View Article and Find Full Text PDF

Green coal and lubricant via hydrogen-free hydrothermal liquefaction of biomass.

Nat Commun

January 2025

Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China.

Biocrude derived from biomass via hydrothermal liquefaction (HTL) is a sustainable substitute for petroleum to obtain energy and biochemicals. Upgrading biocrude inevitably faces the trade-off between consuming large amounts of hydrogen via hydrotreating and high yield of solid residue without additional hydrogen. In this work, we report a non-hydrogenated refinery paradigm for nearly complete valorization (~90%), via co-generating green coal and bio-lubricant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!