Clathrate hydrates of natural gases are important backup energy sources. It is thus of great significance to explore the nucleation process of hydrates. Hydrate clusters are building blocks of crystalline hydrates and represent the initial stage of hydrate nucleation. Using dispersion-corrected density functional theory (DFT-D) combined with machine learning, herein, we systematically investigate the evolution of stabilities and nuclear magnetic resonance (NMR) chemical shifts of amorphous precursors from monocage clusters CH(HO) ( = 16-24) to decacage clusters (CH)(HO) ( = 121-125). Compared with planelike configurations, the close-packed structures formed by the water-cage clusters are energetically favorable. The 5 cages are dominant, and the emerging amorphous precursors may be part of sII hydrates at the initial stage of nucleation. Based on our data set, the possible initial fusion pathways for water-cage clusters are proposed. In addition, the C NMR chemical shifts for encapsulated methane molecules also showed regular changes during the fusion of water-cage clusters. Machine learning can reproduce the DFT-D results well, providing a structure-energy-property landscape that could be used to predict the energy and NMR chemical shifts of such multicages with more water molecules. These theoretical results present vital insights into the hydrate nucleation from a unique perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c09162 | DOI Listing |
Int J Biol Macromol
January 2025
KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium. Electronic address:
The fabrication of objects with complex shape and geometry has been greatly facilitated with the advancements in additive manufacturing. While synthetic polymers like ABS and PLA have found widespread use in extrusion 3D printing, other biobased thermoplastics that are both biodegradable and biocompatible could offer strategic advantages over traditional synthetic materials. In this work dextran of low (20 kDa) and medium (40 kDa) molecular weight (MW) was modified with palmitic acid to obtain meltable polymers for extrusion 3D printing/fused deposition modeling additive manufacturing.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institut de Química Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
The environmental persistence of organophosphate flame retardants (OPFRs) in water is becoming and environmental concern. White Rot Fungi (WRF) have proven its capability to degrade certain OPFRs such as tributyl phosphate (TBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP). Despite this capability, there is limited knowledge about the specific pathways involved in the degradation.
View Article and Find Full Text PDFJ Magn Reson
December 2024
Department of Medicine, University of Alberta, Canada; Department of Biochemistry, University of Alberta, Canada. Electronic address:
Solution NMR studies of large systems are hampered by rapid signal decay. We hereby introduce ROCSY (relaxation-optimized total correlation spectroscopy), which maximizes transfer efficiency across J-coupling-connected spin networks by minimizing the amount of time magnetization spends in the transverse plane. Hard pulses are substituted into the Clean-CITY TOCSY pulse element first developed by Ernst and co-workers, allowing for longer delays in which magnetization is aligned along the z-axis.
View Article and Find Full Text PDFPhytomedicine
December 2024
Scabies Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, Australia. Electronic address:
Background: Scabies is a debilitating and neglected infectious disease with limited effective treatment options and affecting millions of people worldwide, mainly in poor and overcrowded settings. Essential oils from Australasian Myrtaceae are known to have parasiticidal properties, often attributed to the presence of β-triketones, which are known inhibitors of the tyrosine catabolism pathway through inhibition of hydroxyphenylpyruvate dioxygenase (HPPD).
Purpose: In this study, essential oils from mānuka (Leptospermum scoparium) were evaluated in vitro for miticidal and ovicidal activities and their active β-triketone constituents (flavesone, leptospermone, and isoleptospermone) were identified.
Biomacromolecules
January 2025
Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India.
The present investigation aims to develop a reactive oxygen species (ROS) and esterase-responsive biodegradable mannosylated polyurethane to effectively deliver the encapsulated antileishmanial drug amphotericin B (AmB) selectively to infected macrophage cells. Owing to suitable amphiphilic balance, the as-synthesized glycosylated polyurethane () with aryl boronic ester-based diol () moiety as ROS-trigger, water-soluble mannose pendants, and fluorescent 4,4-difluoro-4-bora-3a,4a-diaza--indacene (BODIPY) chain ends for bioimaging formed nanoaggregates in an aqueous medium as confirmed by H NMR spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and critical aggregation concentration (CAC) measurements. Aided by two endogenous stimuli present in phagolysosome, ROS and esterase, AmB-encapsulated polymeric nanoaggregates as drug delivery vehicles achieved an efficient reduction of both and intracellular amastigote burden compared to the free AmB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!