Inspired by natural metalloenzymes that efficiently catalyze a variety of transformations, chemists have developed large numbers of dinuclear transition-metal complexes with extraordinary properties and reactivity patterns. For main-group element compounds, however, metal-metal cooperativity is much less explored. Here we present the synthesis and characterization of a room-temperature-stable compound with two separated two-coordinated gallium(I) centers possessing both a lone pair of electrons and a vacant orbital, reminiscent of singlet carbenes. This species displays enhanced reactivity compared to its mononuclear counterpart due to bimetallic cooperativity that allows for the facile activation of strong C-F bonds across the gallium-gallium bond. Two mechanistic scenarios of the cooperative bond activation have been identified by DFT and DLPNO-CCSD(T) calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c12166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!